Step |
Hyp |
Ref |
Expression |
1 |
|
lhpj1.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
lhpj1.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
lhpj1.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
lhpj1.u |
⊢ 1 = ( 1. ‘ 𝐾 ) |
5 |
|
lhpj1.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
simpll |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → 𝐾 ∈ HL ) |
7 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
8 |
1 5
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵 ) |
9 |
8
|
ad2antlr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → 𝑊 ∈ 𝐵 ) |
10 |
|
eqid |
⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) |
11 |
1 2 10
|
hlrelat2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( ¬ 𝑋 ≤ 𝑊 ↔ ∃ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ( 𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑊 ) ) ) |
12 |
6 7 9 11
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( ¬ 𝑋 ≤ 𝑊 ↔ ∃ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ( 𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑊 ) ) ) |
13 |
|
simp1l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ( 𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
14 |
|
simp2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ( 𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑊 ) ) → 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) |
15 |
|
simp3r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ( 𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑊 ) ) → ¬ 𝑝 ≤ 𝑊 ) |
16 |
2 3 4 10 5
|
lhpjat1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ 𝑝 ≤ 𝑊 ) ) → ( 𝑊 ∨ 𝑝 ) = 1 ) |
17 |
13 14 15 16
|
syl12anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ( 𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑊 ) ) → ( 𝑊 ∨ 𝑝 ) = 1 ) |
18 |
|
simp3l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ( 𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑊 ) ) → 𝑝 ≤ 𝑋 ) |
19 |
|
simp1ll |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ( 𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑊 ) ) → 𝐾 ∈ HL ) |
20 |
19
|
hllatd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ( 𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑊 ) ) → 𝐾 ∈ Lat ) |
21 |
1 10
|
atbase |
⊢ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) → 𝑝 ∈ 𝐵 ) |
22 |
21
|
3ad2ant2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ( 𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑊 ) ) → 𝑝 ∈ 𝐵 ) |
23 |
|
simp1r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ( 𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑊 ) ) → 𝑋 ∈ 𝐵 ) |
24 |
9
|
3ad2ant1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ( 𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑊 ) ) → 𝑊 ∈ 𝐵 ) |
25 |
1 2 3
|
latjlej2 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → ( 𝑝 ≤ 𝑋 → ( 𝑊 ∨ 𝑝 ) ≤ ( 𝑊 ∨ 𝑋 ) ) ) |
26 |
20 22 23 24 25
|
syl13anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ( 𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑊 ) ) → ( 𝑝 ≤ 𝑋 → ( 𝑊 ∨ 𝑝 ) ≤ ( 𝑊 ∨ 𝑋 ) ) ) |
27 |
18 26
|
mpd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ( 𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑊 ) ) → ( 𝑊 ∨ 𝑝 ) ≤ ( 𝑊 ∨ 𝑋 ) ) |
28 |
17 27
|
eqbrtrrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ( 𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑊 ) ) → 1 ≤ ( 𝑊 ∨ 𝑋 ) ) |
29 |
|
hlop |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OP ) |
30 |
19 29
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ( 𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑊 ) ) → 𝐾 ∈ OP ) |
31 |
1 3
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑊 ∨ 𝑋 ) ∈ 𝐵 ) |
32 |
20 24 23 31
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ( 𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑊 ) ) → ( 𝑊 ∨ 𝑋 ) ∈ 𝐵 ) |
33 |
1 2 4
|
op1le |
⊢ ( ( 𝐾 ∈ OP ∧ ( 𝑊 ∨ 𝑋 ) ∈ 𝐵 ) → ( 1 ≤ ( 𝑊 ∨ 𝑋 ) ↔ ( 𝑊 ∨ 𝑋 ) = 1 ) ) |
34 |
30 32 33
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ( 𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑊 ) ) → ( 1 ≤ ( 𝑊 ∨ 𝑋 ) ↔ ( 𝑊 ∨ 𝑋 ) = 1 ) ) |
35 |
28 34
|
mpbid |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ( 𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑊 ) ) → ( 𝑊 ∨ 𝑋 ) = 1 ) |
36 |
35
|
rexlimdv3a |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( ∃ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ( 𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑊 ) → ( 𝑊 ∨ 𝑋 ) = 1 ) ) |
37 |
12 36
|
sylbid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( ¬ 𝑋 ≤ 𝑊 → ( 𝑊 ∨ 𝑋 ) = 1 ) ) |
38 |
37
|
impr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) → ( 𝑊 ∨ 𝑋 ) = 1 ) |