| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							lhpj1.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							lhpj1.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							lhpj1.j | 
							⊢  ∨   =  ( join ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							lhpj1.u | 
							⊢  1   =  ( 1. ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								
							 | 
							lhpj1.h | 
							⊢ 𝐻  =  ( LHyp ‘ 𝐾 )  | 
						
						
							| 6 | 
							
								
							 | 
							simpll | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  𝐵 )  →  𝐾  ∈  HL )  | 
						
						
							| 7 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  𝐵 )  →  𝑋  ∈  𝐵 )  | 
						
						
							| 8 | 
							
								1 5
							 | 
							lhpbase | 
							⊢ ( 𝑊  ∈  𝐻  →  𝑊  ∈  𝐵 )  | 
						
						
							| 9 | 
							
								8
							 | 
							ad2antlr | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  𝐵 )  →  𝑊  ∈  𝐵 )  | 
						
						
							| 10 | 
							
								
							 | 
							eqid | 
							⊢ ( Atoms ‘ 𝐾 )  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 11 | 
							
								1 2 10
							 | 
							hlrelat2 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  →  ( ¬  𝑋  ≤  𝑊  ↔  ∃ 𝑝  ∈  ( Atoms ‘ 𝐾 ) ( 𝑝  ≤  𝑋  ∧  ¬  𝑝  ≤  𝑊 ) ) )  | 
						
						
							| 12 | 
							
								6 7 9 11
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  𝐵 )  →  ( ¬  𝑋  ≤  𝑊  ↔  ∃ 𝑝  ∈  ( Atoms ‘ 𝐾 ) ( 𝑝  ≤  𝑋  ∧  ¬  𝑝  ≤  𝑊 ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							simp1l | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  𝐵 )  ∧  𝑝  ∈  ( Atoms ‘ 𝐾 )  ∧  ( 𝑝  ≤  𝑋  ∧  ¬  𝑝  ≤  𝑊 ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							simp2 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  𝐵 )  ∧  𝑝  ∈  ( Atoms ‘ 𝐾 )  ∧  ( 𝑝  ≤  𝑋  ∧  ¬  𝑝  ≤  𝑊 ) )  →  𝑝  ∈  ( Atoms ‘ 𝐾 ) )  | 
						
						
							| 15 | 
							
								
							 | 
							simp3r | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  𝐵 )  ∧  𝑝  ∈  ( Atoms ‘ 𝐾 )  ∧  ( 𝑝  ≤  𝑋  ∧  ¬  𝑝  ≤  𝑊 ) )  →  ¬  𝑝  ≤  𝑊 )  | 
						
						
							| 16 | 
							
								2 3 4 10 5
							 | 
							lhpjat1 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑝  ∈  ( Atoms ‘ 𝐾 )  ∧  ¬  𝑝  ≤  𝑊 ) )  →  ( 𝑊  ∨  𝑝 )  =   1  )  | 
						
						
							| 17 | 
							
								13 14 15 16
							 | 
							syl12anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  𝐵 )  ∧  𝑝  ∈  ( Atoms ‘ 𝐾 )  ∧  ( 𝑝  ≤  𝑋  ∧  ¬  𝑝  ≤  𝑊 ) )  →  ( 𝑊  ∨  𝑝 )  =   1  )  | 
						
						
							| 18 | 
							
								
							 | 
							simp3l | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  𝐵 )  ∧  𝑝  ∈  ( Atoms ‘ 𝐾 )  ∧  ( 𝑝  ≤  𝑋  ∧  ¬  𝑝  ≤  𝑊 ) )  →  𝑝  ≤  𝑋 )  | 
						
						
							| 19 | 
							
								
							 | 
							simp1ll | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  𝐵 )  ∧  𝑝  ∈  ( Atoms ‘ 𝐾 )  ∧  ( 𝑝  ≤  𝑋  ∧  ¬  𝑝  ≤  𝑊 ) )  →  𝐾  ∈  HL )  | 
						
						
							| 20 | 
							
								19
							 | 
							hllatd | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  𝐵 )  ∧  𝑝  ∈  ( Atoms ‘ 𝐾 )  ∧  ( 𝑝  ≤  𝑋  ∧  ¬  𝑝  ≤  𝑊 ) )  →  𝐾  ∈  Lat )  | 
						
						
							| 21 | 
							
								1 10
							 | 
							atbase | 
							⊢ ( 𝑝  ∈  ( Atoms ‘ 𝐾 )  →  𝑝  ∈  𝐵 )  | 
						
						
							| 22 | 
							
								21
							 | 
							3ad2ant2 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  𝐵 )  ∧  𝑝  ∈  ( Atoms ‘ 𝐾 )  ∧  ( 𝑝  ≤  𝑋  ∧  ¬  𝑝  ≤  𝑊 ) )  →  𝑝  ∈  𝐵 )  | 
						
						
							| 23 | 
							
								
							 | 
							simp1r | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  𝐵 )  ∧  𝑝  ∈  ( Atoms ‘ 𝐾 )  ∧  ( 𝑝  ≤  𝑋  ∧  ¬  𝑝  ≤  𝑊 ) )  →  𝑋  ∈  𝐵 )  | 
						
						
							| 24 | 
							
								9
							 | 
							3ad2ant1 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  𝐵 )  ∧  𝑝  ∈  ( Atoms ‘ 𝐾 )  ∧  ( 𝑝  ≤  𝑋  ∧  ¬  𝑝  ≤  𝑊 ) )  →  𝑊  ∈  𝐵 )  | 
						
						
							| 25 | 
							
								1 2 3
							 | 
							latjlej2 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑝  ∈  𝐵  ∧  𝑋  ∈  𝐵  ∧  𝑊  ∈  𝐵 ) )  →  ( 𝑝  ≤  𝑋  →  ( 𝑊  ∨  𝑝 )  ≤  ( 𝑊  ∨  𝑋 ) ) )  | 
						
						
							| 26 | 
							
								20 22 23 24 25
							 | 
							syl13anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  𝐵 )  ∧  𝑝  ∈  ( Atoms ‘ 𝐾 )  ∧  ( 𝑝  ≤  𝑋  ∧  ¬  𝑝  ≤  𝑊 ) )  →  ( 𝑝  ≤  𝑋  →  ( 𝑊  ∨  𝑝 )  ≤  ( 𝑊  ∨  𝑋 ) ) )  | 
						
						
							| 27 | 
							
								18 26
							 | 
							mpd | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  𝐵 )  ∧  𝑝  ∈  ( Atoms ‘ 𝐾 )  ∧  ( 𝑝  ≤  𝑋  ∧  ¬  𝑝  ≤  𝑊 ) )  →  ( 𝑊  ∨  𝑝 )  ≤  ( 𝑊  ∨  𝑋 ) )  | 
						
						
							| 28 | 
							
								17 27
							 | 
							eqbrtrrd | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  𝐵 )  ∧  𝑝  ∈  ( Atoms ‘ 𝐾 )  ∧  ( 𝑝  ≤  𝑋  ∧  ¬  𝑝  ≤  𝑊 ) )  →   1   ≤  ( 𝑊  ∨  𝑋 ) )  | 
						
						
							| 29 | 
							
								
							 | 
							hlop | 
							⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  OP )  | 
						
						
							| 30 | 
							
								19 29
							 | 
							syl | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  𝐵 )  ∧  𝑝  ∈  ( Atoms ‘ 𝐾 )  ∧  ( 𝑝  ≤  𝑋  ∧  ¬  𝑝  ≤  𝑊 ) )  →  𝐾  ∈  OP )  | 
						
						
							| 31 | 
							
								1 3
							 | 
							latjcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑊  ∈  𝐵  ∧  𝑋  ∈  𝐵 )  →  ( 𝑊  ∨  𝑋 )  ∈  𝐵 )  | 
						
						
							| 32 | 
							
								20 24 23 31
							 | 
							syl3anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  𝐵 )  ∧  𝑝  ∈  ( Atoms ‘ 𝐾 )  ∧  ( 𝑝  ≤  𝑋  ∧  ¬  𝑝  ≤  𝑊 ) )  →  ( 𝑊  ∨  𝑋 )  ∈  𝐵 )  | 
						
						
							| 33 | 
							
								1 2 4
							 | 
							op1le | 
							⊢ ( ( 𝐾  ∈  OP  ∧  ( 𝑊  ∨  𝑋 )  ∈  𝐵 )  →  (  1   ≤  ( 𝑊  ∨  𝑋 )  ↔  ( 𝑊  ∨  𝑋 )  =   1  ) )  | 
						
						
							| 34 | 
							
								30 32 33
							 | 
							syl2anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  𝐵 )  ∧  𝑝  ∈  ( Atoms ‘ 𝐾 )  ∧  ( 𝑝  ≤  𝑋  ∧  ¬  𝑝  ≤  𝑊 ) )  →  (  1   ≤  ( 𝑊  ∨  𝑋 )  ↔  ( 𝑊  ∨  𝑋 )  =   1  ) )  | 
						
						
							| 35 | 
							
								28 34
							 | 
							mpbid | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  𝐵 )  ∧  𝑝  ∈  ( Atoms ‘ 𝐾 )  ∧  ( 𝑝  ≤  𝑋  ∧  ¬  𝑝  ≤  𝑊 ) )  →  ( 𝑊  ∨  𝑋 )  =   1  )  | 
						
						
							| 36 | 
							
								35
							 | 
							rexlimdv3a | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  𝐵 )  →  ( ∃ 𝑝  ∈  ( Atoms ‘ 𝐾 ) ( 𝑝  ≤  𝑋  ∧  ¬  𝑝  ≤  𝑊 )  →  ( 𝑊  ∨  𝑋 )  =   1  ) )  | 
						
						
							| 37 | 
							
								12 36
							 | 
							sylbid | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  𝐵 )  →  ( ¬  𝑋  ≤  𝑊  →  ( 𝑊  ∨  𝑋 )  =   1  ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							impr | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  →  ( 𝑊  ∨  𝑋 )  =   1  )  |