Metamath Proof Explorer


Theorem lhpj1

Description: The join of a co-atom (hyperplane) and an element not under it is the lattice unit. (Contributed by NM, 7-Dec-2012)

Ref Expression
Hypotheses lhpj1.b 𝐵 = ( Base ‘ 𝐾 )
lhpj1.l = ( le ‘ 𝐾 )
lhpj1.j = ( join ‘ 𝐾 )
lhpj1.u 1 = ( 1. ‘ 𝐾 )
lhpj1.h 𝐻 = ( LHyp ‘ 𝐾 )
Assertion lhpj1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) → ( 𝑊 𝑋 ) = 1 )

Proof

Step Hyp Ref Expression
1 lhpj1.b 𝐵 = ( Base ‘ 𝐾 )
2 lhpj1.l = ( le ‘ 𝐾 )
3 lhpj1.j = ( join ‘ 𝐾 )
4 lhpj1.u 1 = ( 1. ‘ 𝐾 )
5 lhpj1.h 𝐻 = ( LHyp ‘ 𝐾 )
6 simpll ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵 ) → 𝐾 ∈ HL )
7 simpr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵 ) → 𝑋𝐵 )
8 1 5 lhpbase ( 𝑊𝐻𝑊𝐵 )
9 8 ad2antlr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵 ) → 𝑊𝐵 )
10 eqid ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 )
11 1 2 10 hlrelat2 ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑊𝐵 ) → ( ¬ 𝑋 𝑊 ↔ ∃ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ( 𝑝 𝑋 ∧ ¬ 𝑝 𝑊 ) ) )
12 6 7 9 11 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵 ) → ( ¬ 𝑋 𝑊 ↔ ∃ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ( 𝑝 𝑋 ∧ ¬ 𝑝 𝑊 ) ) )
13 simp1l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ( 𝑝 𝑋 ∧ ¬ 𝑝 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
14 simp2 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ( 𝑝 𝑋 ∧ ¬ 𝑝 𝑊 ) ) → 𝑝 ∈ ( Atoms ‘ 𝐾 ) )
15 simp3r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ( 𝑝 𝑋 ∧ ¬ 𝑝 𝑊 ) ) → ¬ 𝑝 𝑊 )
16 2 3 4 10 5 lhpjat1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ 𝑝 𝑊 ) ) → ( 𝑊 𝑝 ) = 1 )
17 13 14 15 16 syl12anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ( 𝑝 𝑋 ∧ ¬ 𝑝 𝑊 ) ) → ( 𝑊 𝑝 ) = 1 )
18 simp3l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ( 𝑝 𝑋 ∧ ¬ 𝑝 𝑊 ) ) → 𝑝 𝑋 )
19 simp1ll ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ( 𝑝 𝑋 ∧ ¬ 𝑝 𝑊 ) ) → 𝐾 ∈ HL )
20 19 hllatd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ( 𝑝 𝑋 ∧ ¬ 𝑝 𝑊 ) ) → 𝐾 ∈ Lat )
21 1 10 atbase ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) → 𝑝𝐵 )
22 21 3ad2ant2 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ( 𝑝 𝑋 ∧ ¬ 𝑝 𝑊 ) ) → 𝑝𝐵 )
23 simp1r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ( 𝑝 𝑋 ∧ ¬ 𝑝 𝑊 ) ) → 𝑋𝐵 )
24 9 3ad2ant1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ( 𝑝 𝑋 ∧ ¬ 𝑝 𝑊 ) ) → 𝑊𝐵 )
25 1 2 3 latjlej2 ( ( 𝐾 ∈ Lat ∧ ( 𝑝𝐵𝑋𝐵𝑊𝐵 ) ) → ( 𝑝 𝑋 → ( 𝑊 𝑝 ) ( 𝑊 𝑋 ) ) )
26 20 22 23 24 25 syl13anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ( 𝑝 𝑋 ∧ ¬ 𝑝 𝑊 ) ) → ( 𝑝 𝑋 → ( 𝑊 𝑝 ) ( 𝑊 𝑋 ) ) )
27 18 26 mpd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ( 𝑝 𝑋 ∧ ¬ 𝑝 𝑊 ) ) → ( 𝑊 𝑝 ) ( 𝑊 𝑋 ) )
28 17 27 eqbrtrrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ( 𝑝 𝑋 ∧ ¬ 𝑝 𝑊 ) ) → 1 ( 𝑊 𝑋 ) )
29 hlop ( 𝐾 ∈ HL → 𝐾 ∈ OP )
30 19 29 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ( 𝑝 𝑋 ∧ ¬ 𝑝 𝑊 ) ) → 𝐾 ∈ OP )
31 1 3 latjcl ( ( 𝐾 ∈ Lat ∧ 𝑊𝐵𝑋𝐵 ) → ( 𝑊 𝑋 ) ∈ 𝐵 )
32 20 24 23 31 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ( 𝑝 𝑋 ∧ ¬ 𝑝 𝑊 ) ) → ( 𝑊 𝑋 ) ∈ 𝐵 )
33 1 2 4 op1le ( ( 𝐾 ∈ OP ∧ ( 𝑊 𝑋 ) ∈ 𝐵 ) → ( 1 ( 𝑊 𝑋 ) ↔ ( 𝑊 𝑋 ) = 1 ) )
34 30 32 33 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ( 𝑝 𝑋 ∧ ¬ 𝑝 𝑊 ) ) → ( 1 ( 𝑊 𝑋 ) ↔ ( 𝑊 𝑋 ) = 1 ) )
35 28 34 mpbid ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ( 𝑝 𝑋 ∧ ¬ 𝑝 𝑊 ) ) → ( 𝑊 𝑋 ) = 1 )
36 35 rexlimdv3a ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵 ) → ( ∃ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ( 𝑝 𝑋 ∧ ¬ 𝑝 𝑊 ) → ( 𝑊 𝑋 ) = 1 ) )
37 12 36 sylbid ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵 ) → ( ¬ 𝑋 𝑊 → ( 𝑊 𝑋 ) = 1 ) )
38 37 impr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) → ( 𝑊 𝑋 ) = 1 )