| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							lhpjat.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							lhpjat.j | 
							⊢  ∨   =  ( join ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							lhpjat.u | 
							⊢  1   =  ( 1. ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							lhpjat.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								
							 | 
							lhpjat.h | 
							⊢ 𝐻  =  ( LHyp ‘ 𝐾 )  | 
						
						
							| 6 | 
							
								
							 | 
							hllat | 
							⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  Lat )  | 
						
						
							| 7 | 
							
								6
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) )  →  𝐾  ∈  Lat )  | 
						
						
							| 8 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 )  | 
						
						
							| 9 | 
							
								8 4
							 | 
							atbase | 
							⊢ ( 𝑃  ∈  𝐴  →  𝑃  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							ad2antrl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) )  →  𝑃  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 11 | 
							
								8 5
							 | 
							lhpbase | 
							⊢ ( 𝑊  ∈  𝐻  →  𝑊  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							ad2antlr | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) )  →  𝑊  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 13 | 
							
								8 2
							 | 
							latjcom | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑃  ∈  ( Base ‘ 𝐾 )  ∧  𝑊  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝑃  ∨  𝑊 )  =  ( 𝑊  ∨  𝑃 ) )  | 
						
						
							| 14 | 
							
								7 10 12 13
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) )  →  ( 𝑃  ∨  𝑊 )  =  ( 𝑊  ∨  𝑃 ) )  | 
						
						
							| 15 | 
							
								1 2 3 4 5
							 | 
							lhpjat1 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) )  →  ( 𝑊  ∨  𝑃 )  =   1  )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							eqtrd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) )  →  ( 𝑃  ∨  𝑊 )  =   1  )  |