| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lhple.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | lhple.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 3 |  | lhple.j | ⊢  ∨   =  ( join ‘ 𝐾 ) | 
						
							| 4 |  | lhple.m | ⊢  ∧   =  ( meet ‘ 𝐾 ) | 
						
							| 5 |  | lhple.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 6 |  | lhple.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 7 |  | simp1l | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑋  ≤  𝑊 ) )  →  𝐾  ∈  HL ) | 
						
							| 8 | 7 | hllatd | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑋  ≤  𝑊 ) )  →  𝐾  ∈  Lat ) | 
						
							| 9 |  | simp2l | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑋  ≤  𝑊 ) )  →  𝑃  ∈  𝐴 ) | 
						
							| 10 | 1 5 | atbase | ⊢ ( 𝑃  ∈  𝐴  →  𝑃  ∈  𝐵 ) | 
						
							| 11 | 9 10 | syl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑋  ≤  𝑊 ) )  →  𝑃  ∈  𝐵 ) | 
						
							| 12 |  | simp3l | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑋  ≤  𝑊 ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 13 | 1 3 | latjcom | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑃  ∈  𝐵  ∧  𝑋  ∈  𝐵 )  →  ( 𝑃  ∨  𝑋 )  =  ( 𝑋  ∨  𝑃 ) ) | 
						
							| 14 | 8 11 12 13 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑋  ≤  𝑊 ) )  →  ( 𝑃  ∨  𝑋 )  =  ( 𝑋  ∨  𝑃 ) ) | 
						
							| 15 | 14 | oveq1d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑋  ≤  𝑊 ) )  →  ( ( 𝑃  ∨  𝑋 )  ∧  𝑊 )  =  ( ( 𝑋  ∨  𝑃 )  ∧  𝑊 ) ) | 
						
							| 16 |  | simp1 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑋  ≤  𝑊 ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 17 |  | simp3r | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑋  ≤  𝑊 ) )  →  𝑋  ≤  𝑊 ) | 
						
							| 18 | 1 2 3 4 6 | lhpmod6i1 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐵 )  ∧  𝑋  ≤  𝑊 )  →  ( 𝑋  ∨  ( 𝑃  ∧  𝑊 ) )  =  ( ( 𝑋  ∨  𝑃 )  ∧  𝑊 ) ) | 
						
							| 19 | 16 12 11 17 18 | syl121anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑋  ≤  𝑊 ) )  →  ( 𝑋  ∨  ( 𝑃  ∧  𝑊 ) )  =  ( ( 𝑋  ∨  𝑃 )  ∧  𝑊 ) ) | 
						
							| 20 |  | eqid | ⊢ ( 0. ‘ 𝐾 )  =  ( 0. ‘ 𝐾 ) | 
						
							| 21 | 2 4 20 5 6 | lhpmat | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) )  →  ( 𝑃  ∧  𝑊 )  =  ( 0. ‘ 𝐾 ) ) | 
						
							| 22 | 21 | 3adant3 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑋  ≤  𝑊 ) )  →  ( 𝑃  ∧  𝑊 )  =  ( 0. ‘ 𝐾 ) ) | 
						
							| 23 | 22 | oveq2d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑋  ≤  𝑊 ) )  →  ( 𝑋  ∨  ( 𝑃  ∧  𝑊 ) )  =  ( 𝑋  ∨  ( 0. ‘ 𝐾 ) ) ) | 
						
							| 24 |  | hlol | ⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  OL ) | 
						
							| 25 | 7 24 | syl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑋  ≤  𝑊 ) )  →  𝐾  ∈  OL ) | 
						
							| 26 | 1 3 20 | olj01 | ⊢ ( ( 𝐾  ∈  OL  ∧  𝑋  ∈  𝐵 )  →  ( 𝑋  ∨  ( 0. ‘ 𝐾 ) )  =  𝑋 ) | 
						
							| 27 | 25 12 26 | syl2anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑋  ≤  𝑊 ) )  →  ( 𝑋  ∨  ( 0. ‘ 𝐾 ) )  =  𝑋 ) | 
						
							| 28 | 23 27 | eqtrd | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑋  ≤  𝑊 ) )  →  ( 𝑋  ∨  ( 𝑃  ∧  𝑊 ) )  =  𝑋 ) | 
						
							| 29 | 15 19 28 | 3eqtr2d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑋  ≤  𝑊 ) )  →  ( ( 𝑃  ∨  𝑋 )  ∧  𝑊 )  =  𝑋 ) |