Metamath Proof Explorer


Theorem lhplt

Description: An atom under a co-atom is strictly less than it. TODO: is this needed? (Contributed by NM, 1-Jun-2012)

Ref Expression
Hypotheses lhplt.l = ( le ‘ 𝐾 )
lhplt.s < = ( lt ‘ 𝐾 )
lhplt.a 𝐴 = ( Atoms ‘ 𝐾 )
lhplt.h 𝐻 = ( LHyp ‘ 𝐾 )
Assertion lhplt ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴𝑃 𝑊 ) ) → 𝑃 < 𝑊 )

Proof

Step Hyp Ref Expression
1 lhplt.l = ( le ‘ 𝐾 )
2 lhplt.s < = ( lt ‘ 𝐾 )
3 lhplt.a 𝐴 = ( Atoms ‘ 𝐾 )
4 lhplt.h 𝐻 = ( LHyp ‘ 𝐾 )
5 simpll ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴𝑃 𝑊 ) ) → 𝐾 ∈ HL )
6 simprl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴𝑃 𝑊 ) ) → 𝑃𝐴 )
7 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
8 7 4 lhpbase ( 𝑊𝐻𝑊 ∈ ( Base ‘ 𝐾 ) )
9 8 ad2antlr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴𝑃 𝑊 ) ) → 𝑊 ∈ ( Base ‘ 𝐾 ) )
10 eqid ( 1. ‘ 𝐾 ) = ( 1. ‘ 𝐾 )
11 eqid ( ⋖ ‘ 𝐾 ) = ( ⋖ ‘ 𝐾 )
12 10 11 4 lhp1cvr ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝑊 ( ⋖ ‘ 𝐾 ) ( 1. ‘ 𝐾 ) )
13 12 adantr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴𝑃 𝑊 ) ) → 𝑊 ( ⋖ ‘ 𝐾 ) ( 1. ‘ 𝐾 ) )
14 simprr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴𝑃 𝑊 ) ) → 𝑃 𝑊 )
15 7 1 2 10 11 3 1cvratlt ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑊 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑊 ( ⋖ ‘ 𝐾 ) ( 1. ‘ 𝐾 ) ∧ 𝑃 𝑊 ) ) → 𝑃 < 𝑊 )
16 5 6 9 13 14 15 syl32anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴𝑃 𝑊 ) ) → 𝑃 < 𝑊 )