Step |
Hyp |
Ref |
Expression |
1 |
|
lhplt.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
lhplt.s |
⊢ < = ( lt ‘ 𝐾 ) |
3 |
|
lhplt.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
lhplt.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
5 |
|
simpll |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ) → 𝐾 ∈ HL ) |
6 |
|
simprl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ) → 𝑃 ∈ 𝐴 ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
8 |
7 4
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
9 |
8
|
ad2antlr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ) → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
10 |
|
eqid |
⊢ ( 1. ‘ 𝐾 ) = ( 1. ‘ 𝐾 ) |
11 |
|
eqid |
⊢ ( ⋖ ‘ 𝐾 ) = ( ⋖ ‘ 𝐾 ) |
12 |
10 11 4
|
lhp1cvr |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝑊 ( ⋖ ‘ 𝐾 ) ( 1. ‘ 𝐾 ) ) |
13 |
12
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ) → 𝑊 ( ⋖ ‘ 𝐾 ) ( 1. ‘ 𝐾 ) ) |
14 |
|
simprr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ) → 𝑃 ≤ 𝑊 ) |
15 |
7 1 2 10 11 3
|
1cvratlt |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑊 ( ⋖ ‘ 𝐾 ) ( 1. ‘ 𝐾 ) ∧ 𝑃 ≤ 𝑊 ) ) → 𝑃 < 𝑊 ) |
16 |
5 6 9 13 14 15
|
syl32anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ) → 𝑃 < 𝑊 ) |