| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lhplt.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 2 |  | lhplt.s | ⊢  <   =  ( lt ‘ 𝐾 ) | 
						
							| 3 |  | lhplt.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 4 |  | lhplt.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 5 |  | simpll | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑃  ≤  𝑊 ) )  →  𝐾  ∈  HL ) | 
						
							| 6 |  | simprl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑃  ≤  𝑊 ) )  →  𝑃  ∈  𝐴 ) | 
						
							| 7 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 8 | 7 4 | lhpbase | ⊢ ( 𝑊  ∈  𝐻  →  𝑊  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 9 | 8 | ad2antlr | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑃  ≤  𝑊 ) )  →  𝑊  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 10 |  | eqid | ⊢ ( 1. ‘ 𝐾 )  =  ( 1. ‘ 𝐾 ) | 
						
							| 11 |  | eqid | ⊢ (  ⋖  ‘ 𝐾 )  =  (  ⋖  ‘ 𝐾 ) | 
						
							| 12 | 10 11 4 | lhp1cvr | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →  𝑊 (  ⋖  ‘ 𝐾 ) ( 1. ‘ 𝐾 ) ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑃  ≤  𝑊 ) )  →  𝑊 (  ⋖  ‘ 𝐾 ) ( 1. ‘ 𝐾 ) ) | 
						
							| 14 |  | simprr | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑃  ≤  𝑊 ) )  →  𝑃  ≤  𝑊 ) | 
						
							| 15 | 7 1 2 10 11 3 | 1cvratlt | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑊  ∈  ( Base ‘ 𝐾 ) )  ∧  ( 𝑊 (  ⋖  ‘ 𝐾 ) ( 1. ‘ 𝐾 )  ∧  𝑃  ≤  𝑊 ) )  →  𝑃  <  𝑊 ) | 
						
							| 16 | 5 6 9 13 14 15 | syl32anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑃  ≤  𝑊 ) )  →  𝑃  <  𝑊 ) |