| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lhpmat.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 2 |  | lhpmat.m | ⊢  ∧   =  ( meet ‘ 𝐾 ) | 
						
							| 3 |  | lhpmat.z | ⊢  0   =  ( 0. ‘ 𝐾 ) | 
						
							| 4 |  | lhpmat.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 5 |  | lhpmat.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 6 |  | simprr | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) )  →  ¬  𝑃  ≤  𝑊 ) | 
						
							| 7 |  | hlatl | ⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  AtLat ) | 
						
							| 8 | 7 | ad2antrr | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) )  →  𝐾  ∈  AtLat ) | 
						
							| 9 |  | simprl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) )  →  𝑃  ∈  𝐴 ) | 
						
							| 10 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 11 | 10 5 | lhpbase | ⊢ ( 𝑊  ∈  𝐻  →  𝑊  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 12 | 11 | ad2antlr | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) )  →  𝑊  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 13 | 10 1 2 3 4 | atnle | ⊢ ( ( 𝐾  ∈  AtLat  ∧  𝑃  ∈  𝐴  ∧  𝑊  ∈  ( Base ‘ 𝐾 ) )  →  ( ¬  𝑃  ≤  𝑊  ↔  ( 𝑃  ∧  𝑊 )  =   0  ) ) | 
						
							| 14 | 8 9 12 13 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) )  →  ( ¬  𝑃  ≤  𝑊  ↔  ( 𝑃  ∧  𝑊 )  =   0  ) ) | 
						
							| 15 | 6 14 | mpbid | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) )  →  ( 𝑃  ∧  𝑊 )  =   0  ) |