Step |
Hyp |
Ref |
Expression |
1 |
|
lhpmat.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
lhpmat.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
3 |
|
lhpmat.z |
⊢ 0 = ( 0. ‘ 𝐾 ) |
4 |
|
lhpmat.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
lhpmat.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
simprr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ¬ 𝑃 ≤ 𝑊 ) |
7 |
|
hlatl |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ AtLat ) |
8 |
7
|
ad2antrr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝐾 ∈ AtLat ) |
9 |
|
simprl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝑃 ∈ 𝐴 ) |
10 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
11 |
10 5
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
12 |
11
|
ad2antlr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
13 |
10 1 2 3 4
|
atnle |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( ¬ 𝑃 ≤ 𝑊 ↔ ( 𝑃 ∧ 𝑊 ) = 0 ) ) |
14 |
8 9 12 13
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ¬ 𝑃 ≤ 𝑊 ↔ ( 𝑃 ∧ 𝑊 ) = 0 ) ) |
15 |
6 14
|
mpbid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑃 ∧ 𝑊 ) = 0 ) |