Step |
Hyp |
Ref |
Expression |
1 |
|
lhpmat.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
lhpmat.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
3 |
|
lhpmat.z |
⊢ 0 = ( 0. ‘ 𝐾 ) |
4 |
|
lhpmat.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
lhpmat.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
1 2 3 4 5
|
lhpmat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑃 ∧ 𝑊 ) = 0 ) |
7 |
6
|
anassrs |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑃 ∈ 𝐴 ) ∧ ¬ 𝑃 ≤ 𝑊 ) → ( 𝑃 ∧ 𝑊 ) = 0 ) |
8 |
|
hlatl |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ AtLat ) |
9 |
8
|
ad3antrrr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑃 ∧ 𝑊 ) = 0 ) → 𝐾 ∈ AtLat ) |
10 |
|
simplr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑃 ∧ 𝑊 ) = 0 ) → 𝑃 ∈ 𝐴 ) |
11 |
3 4
|
atn0 |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ) → 𝑃 ≠ 0 ) |
12 |
11
|
necomd |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ) → 0 ≠ 𝑃 ) |
13 |
9 10 12
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑃 ∧ 𝑊 ) = 0 ) → 0 ≠ 𝑃 ) |
14 |
|
neeq1 |
⊢ ( ( 𝑃 ∧ 𝑊 ) = 0 → ( ( 𝑃 ∧ 𝑊 ) ≠ 𝑃 ↔ 0 ≠ 𝑃 ) ) |
15 |
14
|
adantl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑃 ∧ 𝑊 ) = 0 ) → ( ( 𝑃 ∧ 𝑊 ) ≠ 𝑃 ↔ 0 ≠ 𝑃 ) ) |
16 |
13 15
|
mpbird |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑃 ∧ 𝑊 ) = 0 ) → ( 𝑃 ∧ 𝑊 ) ≠ 𝑃 ) |
17 |
|
hllat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) |
18 |
17
|
ad3antrrr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑃 ∧ 𝑊 ) = 0 ) → 𝐾 ∈ Lat ) |
19 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
20 |
19 4
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
21 |
10 20
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑃 ∧ 𝑊 ) = 0 ) → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
22 |
19 5
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
23 |
22
|
ad3antlr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑃 ∧ 𝑊 ) = 0 ) → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
24 |
19 1 2
|
latleeqm1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑃 ≤ 𝑊 ↔ ( 𝑃 ∧ 𝑊 ) = 𝑃 ) ) |
25 |
18 21 23 24
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑃 ∧ 𝑊 ) = 0 ) → ( 𝑃 ≤ 𝑊 ↔ ( 𝑃 ∧ 𝑊 ) = 𝑃 ) ) |
26 |
25
|
necon3bbid |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑃 ∧ 𝑊 ) = 0 ) → ( ¬ 𝑃 ≤ 𝑊 ↔ ( 𝑃 ∧ 𝑊 ) ≠ 𝑃 ) ) |
27 |
16 26
|
mpbird |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑃 ∧ 𝑊 ) = 0 ) → ¬ 𝑃 ≤ 𝑊 ) |
28 |
7 27
|
impbida |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑃 ∈ 𝐴 ) → ( ¬ 𝑃 ≤ 𝑊 ↔ ( 𝑃 ∧ 𝑊 ) = 0 ) ) |