| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							lhpmcvr.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							lhpmcvr.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							lhpmcvr.m | 
							⊢  ∧   =  ( meet ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							lhpmcvr.c | 
							⊢ 𝐶  =  (  ⋖  ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								
							 | 
							lhpmcvr.h | 
							⊢ 𝐻  =  ( LHyp ‘ 𝐾 )  | 
						
						
							| 6 | 
							
								
							 | 
							hllat | 
							⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  Lat )  | 
						
						
							| 7 | 
							
								6
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  →  𝐾  ∈  Lat )  | 
						
						
							| 8 | 
							
								
							 | 
							simprl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  →  𝑋  ∈  𝐵 )  | 
						
						
							| 9 | 
							
								1 5
							 | 
							lhpbase | 
							⊢ ( 𝑊  ∈  𝐻  →  𝑊  ∈  𝐵 )  | 
						
						
							| 10 | 
							
								9
							 | 
							ad2antlr | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  →  𝑊  ∈  𝐵 )  | 
						
						
							| 11 | 
							
								1 3
							 | 
							latmcom | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  →  ( 𝑋  ∧  𝑊 )  =  ( 𝑊  ∧  𝑋 ) )  | 
						
						
							| 12 | 
							
								7 8 10 11
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  →  ( 𝑋  ∧  𝑊 )  =  ( 𝑊  ∧  𝑋 ) )  | 
						
						
							| 13 | 
							
								
							 | 
							eqid | 
							⊢ ( 1. ‘ 𝐾 )  =  ( 1. ‘ 𝐾 )  | 
						
						
							| 14 | 
							
								13 4 5
							 | 
							lhp1cvr | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →  𝑊 𝐶 ( 1. ‘ 𝐾 ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							adantr | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  →  𝑊 𝐶 ( 1. ‘ 𝐾 ) )  | 
						
						
							| 16 | 
							
								
							 | 
							eqid | 
							⊢ ( join ‘ 𝐾 )  =  ( join ‘ 𝐾 )  | 
						
						
							| 17 | 
							
								1 2 16 13 5
							 | 
							lhpj1 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  →  ( 𝑊 ( join ‘ 𝐾 ) 𝑋 )  =  ( 1. ‘ 𝐾 ) )  | 
						
						
							| 18 | 
							
								15 17
							 | 
							breqtrrd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  →  𝑊 𝐶 ( 𝑊 ( join ‘ 𝐾 ) 𝑋 ) )  | 
						
						
							| 19 | 
							
								
							 | 
							simpll | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  →  𝐾  ∈  HL )  | 
						
						
							| 20 | 
							
								1 16 3 4
							 | 
							cvrexch | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐵  ∧  𝑋  ∈  𝐵 )  →  ( ( 𝑊  ∧  𝑋 ) 𝐶 𝑋  ↔  𝑊 𝐶 ( 𝑊 ( join ‘ 𝐾 ) 𝑋 ) ) )  | 
						
						
							| 21 | 
							
								19 10 8 20
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  →  ( ( 𝑊  ∧  𝑋 ) 𝐶 𝑋  ↔  𝑊 𝐶 ( 𝑊 ( join ‘ 𝐾 ) 𝑋 ) ) )  | 
						
						
							| 22 | 
							
								18 21
							 | 
							mpbird | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  →  ( 𝑊  ∧  𝑋 ) 𝐶 𝑋 )  | 
						
						
							| 23 | 
							
								12 22
							 | 
							eqbrtrd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  →  ( 𝑋  ∧  𝑊 ) 𝐶 𝑋 )  |