Step |
Hyp |
Ref |
Expression |
1 |
|
lhpmcvr2.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
lhpmcvr2.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
lhpmcvr2.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
lhpmcvr2.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
5 |
|
lhpmcvr2.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
6 |
|
lhpmcvr2.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
7 |
|
simpl1l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ 𝑃 ≤ 𝑋 ) → 𝐾 ∈ HL ) |
8 |
|
simpl3l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ 𝑃 ≤ 𝑋 ) → 𝑃 ∈ 𝐴 ) |
9 |
|
simpl2l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ 𝑃 ≤ 𝑋 ) → 𝑋 ∈ 𝐵 ) |
10 |
|
simpl1r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ 𝑃 ≤ 𝑋 ) → 𝑊 ∈ 𝐻 ) |
11 |
1 6
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵 ) |
12 |
10 11
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ 𝑃 ≤ 𝑋 ) → 𝑊 ∈ 𝐵 ) |
13 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ 𝑃 ≤ 𝑋 ) → 𝑃 ≤ 𝑋 ) |
14 |
1 2 3 4 5
|
atmod3i1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝑃 ≤ 𝑋 ) → ( 𝑃 ∨ ( 𝑋 ∧ 𝑊 ) ) = ( 𝑋 ∧ ( 𝑃 ∨ 𝑊 ) ) ) |
15 |
7 8 9 12 13 14
|
syl131anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ 𝑃 ≤ 𝑋 ) → ( 𝑃 ∨ ( 𝑋 ∧ 𝑊 ) ) = ( 𝑋 ∧ ( 𝑃 ∨ 𝑊 ) ) ) |
16 |
|
simpl1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ 𝑃 ≤ 𝑋 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
17 |
|
simpl3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ 𝑃 ≤ 𝑋 ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
18 |
|
eqid |
⊢ ( 1. ‘ 𝐾 ) = ( 1. ‘ 𝐾 ) |
19 |
2 3 18 5 6
|
lhpjat2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑃 ∨ 𝑊 ) = ( 1. ‘ 𝐾 ) ) |
20 |
16 17 19
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ 𝑃 ≤ 𝑋 ) → ( 𝑃 ∨ 𝑊 ) = ( 1. ‘ 𝐾 ) ) |
21 |
20
|
oveq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ 𝑃 ≤ 𝑋 ) → ( 𝑋 ∧ ( 𝑃 ∨ 𝑊 ) ) = ( 𝑋 ∧ ( 1. ‘ 𝐾 ) ) ) |
22 |
|
hlol |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OL ) |
23 |
7 22
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ 𝑃 ≤ 𝑋 ) → 𝐾 ∈ OL ) |
24 |
1 4 18
|
olm11 |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ∧ ( 1. ‘ 𝐾 ) ) = 𝑋 ) |
25 |
23 9 24
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ 𝑃 ≤ 𝑋 ) → ( 𝑋 ∧ ( 1. ‘ 𝐾 ) ) = 𝑋 ) |
26 |
15 21 25
|
3eqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ 𝑃 ≤ 𝑋 ) → ( 𝑃 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) |
27 |
|
simpl1l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( 𝑃 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → 𝐾 ∈ HL ) |
28 |
27
|
hllatd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( 𝑃 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → 𝐾 ∈ Lat ) |
29 |
|
simpl3l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( 𝑃 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → 𝑃 ∈ 𝐴 ) |
30 |
1 5
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵 ) |
31 |
29 30
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( 𝑃 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → 𝑃 ∈ 𝐵 ) |
32 |
|
simpl2l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( 𝑃 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → 𝑋 ∈ 𝐵 ) |
33 |
|
simpl1r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( 𝑃 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → 𝑊 ∈ 𝐻 ) |
34 |
33 11
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( 𝑃 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → 𝑊 ∈ 𝐵 ) |
35 |
1 4
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑊 ) ∈ 𝐵 ) |
36 |
28 32 34 35
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( 𝑃 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → ( 𝑋 ∧ 𝑊 ) ∈ 𝐵 ) |
37 |
1 2 3
|
latlej1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑊 ) ∈ 𝐵 ) → 𝑃 ≤ ( 𝑃 ∨ ( 𝑋 ∧ 𝑊 ) ) ) |
38 |
28 31 36 37
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( 𝑃 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → 𝑃 ≤ ( 𝑃 ∨ ( 𝑋 ∧ 𝑊 ) ) ) |
39 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( 𝑃 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → ( 𝑃 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) |
40 |
38 39
|
breqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( 𝑃 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → 𝑃 ≤ 𝑋 ) |
41 |
26 40
|
impbida |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑃 ≤ 𝑋 ↔ ( 𝑃 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) |