Metamath Proof Explorer


Theorem lhpmcvr6N

Description: Specialization of lhpmcvr2 . (Contributed by NM, 6-Apr-2014) (New usage is discouraged.)

Ref Expression
Hypotheses lhpmcvr2.b 𝐵 = ( Base ‘ 𝐾 )
lhpmcvr2.l = ( le ‘ 𝐾 )
lhpmcvr2.j = ( join ‘ 𝐾 )
lhpmcvr2.m = ( meet ‘ 𝐾 )
lhpmcvr2.a 𝐴 = ( Atoms ‘ 𝐾 )
lhpmcvr2.h 𝐻 = ( LHyp ‘ 𝐾 )
Assertion lhpmcvr6N ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵 ∧ ( 𝑋 𝑌 ) 𝑊 ) ) → ∃ 𝑝𝐴 ( ¬ 𝑝 𝑊 ∧ ¬ 𝑝 𝑌𝑝 𝑋 ) )

Proof

Step Hyp Ref Expression
1 lhpmcvr2.b 𝐵 = ( Base ‘ 𝐾 )
2 lhpmcvr2.l = ( le ‘ 𝐾 )
3 lhpmcvr2.j = ( join ‘ 𝐾 )
4 lhpmcvr2.m = ( meet ‘ 𝐾 )
5 lhpmcvr2.a 𝐴 = ( Atoms ‘ 𝐾 )
6 lhpmcvr2.h 𝐻 = ( LHyp ‘ 𝐾 )
7 1 2 3 4 5 6 lhpmcvr5N ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵 ∧ ( 𝑋 𝑌 ) 𝑊 ) ) → ∃ 𝑝𝐴 ( ¬ 𝑝 𝑊 ∧ ¬ 𝑝 𝑌 ∧ ( 𝑝 ( 𝑋 𝑊 ) ) = 𝑋 ) )
8 simp31 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵 ∧ ( 𝑋 𝑌 ) 𝑊 ) ) ∧ 𝑝𝐴 ∧ ( ¬ 𝑝 𝑊 ∧ ¬ 𝑝 𝑌 ∧ ( 𝑝 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ¬ 𝑝 𝑊 )
9 simp32 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵 ∧ ( 𝑋 𝑌 ) 𝑊 ) ) ∧ 𝑝𝐴 ∧ ( ¬ 𝑝 𝑊 ∧ ¬ 𝑝 𝑌 ∧ ( 𝑝 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ¬ 𝑝 𝑌 )
10 simp11l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵 ∧ ( 𝑋 𝑌 ) 𝑊 ) ) ∧ 𝑝𝐴 ∧ ( ¬ 𝑝 𝑊 ∧ ¬ 𝑝 𝑌 ∧ ( 𝑝 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → 𝐾 ∈ HL )
11 10 hllatd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵 ∧ ( 𝑋 𝑌 ) 𝑊 ) ) ∧ 𝑝𝐴 ∧ ( ¬ 𝑝 𝑊 ∧ ¬ 𝑝 𝑌 ∧ ( 𝑝 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → 𝐾 ∈ Lat )
12 1 5 atbase ( 𝑝𝐴𝑝𝐵 )
13 12 3ad2ant2 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵 ∧ ( 𝑋 𝑌 ) 𝑊 ) ) ∧ 𝑝𝐴 ∧ ( ¬ 𝑝 𝑊 ∧ ¬ 𝑝 𝑌 ∧ ( 𝑝 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → 𝑝𝐵 )
14 simp12l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵 ∧ ( 𝑋 𝑌 ) 𝑊 ) ) ∧ 𝑝𝐴 ∧ ( ¬ 𝑝 𝑊 ∧ ¬ 𝑝 𝑌 ∧ ( 𝑝 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → 𝑋𝐵 )
15 simp11r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵 ∧ ( 𝑋 𝑌 ) 𝑊 ) ) ∧ 𝑝𝐴 ∧ ( ¬ 𝑝 𝑊 ∧ ¬ 𝑝 𝑌 ∧ ( 𝑝 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → 𝑊𝐻 )
16 1 6 lhpbase ( 𝑊𝐻𝑊𝐵 )
17 15 16 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵 ∧ ( 𝑋 𝑌 ) 𝑊 ) ) ∧ 𝑝𝐴 ∧ ( ¬ 𝑝 𝑊 ∧ ¬ 𝑝 𝑌 ∧ ( 𝑝 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → 𝑊𝐵 )
18 1 4 latmcl ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵 ) → ( 𝑋 𝑊 ) ∈ 𝐵 )
19 11 14 17 18 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵 ∧ ( 𝑋 𝑌 ) 𝑊 ) ) ∧ 𝑝𝐴 ∧ ( ¬ 𝑝 𝑊 ∧ ¬ 𝑝 𝑌 ∧ ( 𝑝 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( 𝑋 𝑊 ) ∈ 𝐵 )
20 1 2 3 latlej1 ( ( 𝐾 ∈ Lat ∧ 𝑝𝐵 ∧ ( 𝑋 𝑊 ) ∈ 𝐵 ) → 𝑝 ( 𝑝 ( 𝑋 𝑊 ) ) )
21 11 13 19 20 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵 ∧ ( 𝑋 𝑌 ) 𝑊 ) ) ∧ 𝑝𝐴 ∧ ( ¬ 𝑝 𝑊 ∧ ¬ 𝑝 𝑌 ∧ ( 𝑝 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → 𝑝 ( 𝑝 ( 𝑋 𝑊 ) ) )
22 simp33 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵 ∧ ( 𝑋 𝑌 ) 𝑊 ) ) ∧ 𝑝𝐴 ∧ ( ¬ 𝑝 𝑊 ∧ ¬ 𝑝 𝑌 ∧ ( 𝑝 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( 𝑝 ( 𝑋 𝑊 ) ) = 𝑋 )
23 21 22 breqtrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵 ∧ ( 𝑋 𝑌 ) 𝑊 ) ) ∧ 𝑝𝐴 ∧ ( ¬ 𝑝 𝑊 ∧ ¬ 𝑝 𝑌 ∧ ( 𝑝 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → 𝑝 𝑋 )
24 8 9 23 3jca ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵 ∧ ( 𝑋 𝑌 ) 𝑊 ) ) ∧ 𝑝𝐴 ∧ ( ¬ 𝑝 𝑊 ∧ ¬ 𝑝 𝑌 ∧ ( 𝑝 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( ¬ 𝑝 𝑊 ∧ ¬ 𝑝 𝑌𝑝 𝑋 ) )
25 24 3expia ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵 ∧ ( 𝑋 𝑌 ) 𝑊 ) ) ∧ 𝑝𝐴 ) → ( ( ¬ 𝑝 𝑊 ∧ ¬ 𝑝 𝑌 ∧ ( 𝑝 ( 𝑋 𝑊 ) ) = 𝑋 ) → ( ¬ 𝑝 𝑊 ∧ ¬ 𝑝 𝑌𝑝 𝑋 ) ) )
26 25 reximdva ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵 ∧ ( 𝑋 𝑌 ) 𝑊 ) ) → ( ∃ 𝑝𝐴 ( ¬ 𝑝 𝑊 ∧ ¬ 𝑝 𝑌 ∧ ( 𝑝 ( 𝑋 𝑊 ) ) = 𝑋 ) → ∃ 𝑝𝐴 ( ¬ 𝑝 𝑊 ∧ ¬ 𝑝 𝑌𝑝 𝑋 ) ) )
27 7 26 mpd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵 ∧ ( 𝑋 𝑌 ) 𝑊 ) ) → ∃ 𝑝𝐴 ( ¬ 𝑝 𝑊 ∧ ¬ 𝑝 𝑌𝑝 𝑋 ) )