Step |
Hyp |
Ref |
Expression |
1 |
|
lhpmcvr2.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
lhpmcvr2.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
lhpmcvr2.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
lhpmcvr2.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
5 |
|
lhpmcvr2.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
6 |
|
lhpmcvr2.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
7 |
1 2 3 4 5 6
|
lhpmcvr5N |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → ∃ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑝 ≤ 𝑌 ∧ ( 𝑝 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) |
8 |
|
simp31 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ∧ 𝑝 ∈ 𝐴 ∧ ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑝 ≤ 𝑌 ∧ ( 𝑝 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → ¬ 𝑝 ≤ 𝑊 ) |
9 |
|
simp32 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ∧ 𝑝 ∈ 𝐴 ∧ ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑝 ≤ 𝑌 ∧ ( 𝑝 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → ¬ 𝑝 ≤ 𝑌 ) |
10 |
|
simp11l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ∧ 𝑝 ∈ 𝐴 ∧ ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑝 ≤ 𝑌 ∧ ( 𝑝 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → 𝐾 ∈ HL ) |
11 |
10
|
hllatd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ∧ 𝑝 ∈ 𝐴 ∧ ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑝 ≤ 𝑌 ∧ ( 𝑝 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → 𝐾 ∈ Lat ) |
12 |
1 5
|
atbase |
⊢ ( 𝑝 ∈ 𝐴 → 𝑝 ∈ 𝐵 ) |
13 |
12
|
3ad2ant2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ∧ 𝑝 ∈ 𝐴 ∧ ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑝 ≤ 𝑌 ∧ ( 𝑝 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → 𝑝 ∈ 𝐵 ) |
14 |
|
simp12l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ∧ 𝑝 ∈ 𝐴 ∧ ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑝 ≤ 𝑌 ∧ ( 𝑝 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → 𝑋 ∈ 𝐵 ) |
15 |
|
simp11r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ∧ 𝑝 ∈ 𝐴 ∧ ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑝 ≤ 𝑌 ∧ ( 𝑝 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → 𝑊 ∈ 𝐻 ) |
16 |
1 6
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵 ) |
17 |
15 16
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ∧ 𝑝 ∈ 𝐴 ∧ ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑝 ≤ 𝑌 ∧ ( 𝑝 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → 𝑊 ∈ 𝐵 ) |
18 |
1 4
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑊 ) ∈ 𝐵 ) |
19 |
11 14 17 18
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ∧ 𝑝 ∈ 𝐴 ∧ ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑝 ≤ 𝑌 ∧ ( 𝑝 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → ( 𝑋 ∧ 𝑊 ) ∈ 𝐵 ) |
20 |
1 2 3
|
latlej1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑝 ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑊 ) ∈ 𝐵 ) → 𝑝 ≤ ( 𝑝 ∨ ( 𝑋 ∧ 𝑊 ) ) ) |
21 |
11 13 19 20
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ∧ 𝑝 ∈ 𝐴 ∧ ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑝 ≤ 𝑌 ∧ ( 𝑝 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → 𝑝 ≤ ( 𝑝 ∨ ( 𝑋 ∧ 𝑊 ) ) ) |
22 |
|
simp33 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ∧ 𝑝 ∈ 𝐴 ∧ ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑝 ≤ 𝑌 ∧ ( 𝑝 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → ( 𝑝 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) |
23 |
21 22
|
breqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ∧ 𝑝 ∈ 𝐴 ∧ ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑝 ≤ 𝑌 ∧ ( 𝑝 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → 𝑝 ≤ 𝑋 ) |
24 |
8 9 23
|
3jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ∧ 𝑝 ∈ 𝐴 ∧ ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑝 ≤ 𝑌 ∧ ( 𝑝 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑝 ≤ 𝑌 ∧ 𝑝 ≤ 𝑋 ) ) |
25 |
24
|
3expia |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ∧ 𝑝 ∈ 𝐴 ) → ( ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑝 ≤ 𝑌 ∧ ( 𝑝 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑝 ≤ 𝑌 ∧ 𝑝 ≤ 𝑋 ) ) ) |
26 |
25
|
reximdva |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → ( ∃ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑝 ≤ 𝑌 ∧ ( 𝑝 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → ∃ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑝 ≤ 𝑌 ∧ 𝑝 ≤ 𝑋 ) ) ) |
27 |
7 26
|
mpd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → ∃ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑝 ≤ 𝑌 ∧ 𝑝 ≤ 𝑋 ) ) |