| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							lhpmod.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							lhpmod.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							lhpmod.j | 
							⊢  ∨   =  ( join ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							lhpmod.m | 
							⊢  ∧   =  ( meet ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								
							 | 
							lhpmod.h | 
							⊢ 𝐻  =  ( LHyp ‘ 𝐾 )  | 
						
						
							| 6 | 
							
								
							 | 
							simp1l | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑌  ≤  𝑋 )  →  𝐾  ∈  HL )  | 
						
						
							| 7 | 
							
								
							 | 
							simp1r | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑌  ≤  𝑋 )  →  𝑊  ∈  𝐻 )  | 
						
						
							| 8 | 
							
								
							 | 
							eqid | 
							⊢ ( oc ‘ 𝐾 )  =  ( oc ‘ 𝐾 )  | 
						
						
							| 9 | 
							
								
							 | 
							eqid | 
							⊢ ( Atoms ‘ 𝐾 )  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 10 | 
							
								8 9 5
							 | 
							lhpocat | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →  ( ( oc ‘ 𝐾 ) ‘ 𝑊 )  ∈  ( Atoms ‘ 𝐾 ) )  | 
						
						
							| 11 | 
							
								6 7 10
							 | 
							syl2anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑌  ≤  𝑋 )  →  ( ( oc ‘ 𝐾 ) ‘ 𝑊 )  ∈  ( Atoms ‘ 𝐾 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							hlop | 
							⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  OP )  | 
						
						
							| 13 | 
							
								6 12
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑌  ≤  𝑋 )  →  𝐾  ∈  OP )  | 
						
						
							| 14 | 
							
								
							 | 
							simp2l | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑌  ≤  𝑋 )  →  𝑋  ∈  𝐵 )  | 
						
						
							| 15 | 
							
								1 8
							 | 
							opoccl | 
							⊢ ( ( 𝐾  ∈  OP  ∧  𝑋  ∈  𝐵 )  →  ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∈  𝐵 )  | 
						
						
							| 16 | 
							
								13 14 15
							 | 
							syl2anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑌  ≤  𝑋 )  →  ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∈  𝐵 )  | 
						
						
							| 17 | 
							
								
							 | 
							simp2r | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑌  ≤  𝑋 )  →  𝑌  ∈  𝐵 )  | 
						
						
							| 18 | 
							
								1 8
							 | 
							opoccl | 
							⊢ ( ( 𝐾  ∈  OP  ∧  𝑌  ∈  𝐵 )  →  ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∈  𝐵 )  | 
						
						
							| 19 | 
							
								13 17 18
							 | 
							syl2anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑌  ≤  𝑋 )  →  ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∈  𝐵 )  | 
						
						
							| 20 | 
							
								
							 | 
							simp3 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑌  ≤  𝑋 )  →  𝑌  ≤  𝑋 )  | 
						
						
							| 21 | 
							
								1 2 8
							 | 
							oplecon3b | 
							⊢ ( ( 𝐾  ∈  OP  ∧  𝑌  ∈  𝐵  ∧  𝑋  ∈  𝐵 )  →  ( 𝑌  ≤  𝑋  ↔  ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ≤  ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) )  | 
						
						
							| 22 | 
							
								13 17 14 21
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑌  ≤  𝑋 )  →  ( 𝑌  ≤  𝑋  ↔  ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ≤  ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) )  | 
						
						
							| 23 | 
							
								20 22
							 | 
							mpbid | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑌  ≤  𝑋 )  →  ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ≤  ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) )  | 
						
						
							| 24 | 
							
								1 2 3 4 9
							 | 
							atmod1i2 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 )  ∈  ( Atoms ‘ 𝐾 )  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∈  𝐵  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∈  𝐵 )  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ≤  ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) )  →  ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 )  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) )  =  ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) )  | 
						
						
							| 25 | 
							
								6 11 16 19 23 24
							 | 
							syl131anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑌  ≤  𝑋 )  →  ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 )  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) )  =  ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) )  | 
						
						
							| 26 | 
							
								6
							 | 
							hllatd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑌  ≤  𝑋 )  →  𝐾  ∈  Lat )  | 
						
						
							| 27 | 
							
								1 5
							 | 
							lhpbase | 
							⊢ ( 𝑊  ∈  𝐻  →  𝑊  ∈  𝐵 )  | 
						
						
							| 28 | 
							
								7 27
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑌  ≤  𝑋 )  →  𝑊  ∈  𝐵 )  | 
						
						
							| 29 | 
							
								1 4
							 | 
							latmcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  →  ( 𝑋  ∧  𝑊 )  ∈  𝐵 )  | 
						
						
							| 30 | 
							
								26 14 28 29
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑌  ≤  𝑋 )  →  ( 𝑋  ∧  𝑊 )  ∈  𝐵 )  | 
						
						
							| 31 | 
							
								1 3
							 | 
							latjcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑋  ∧  𝑊 )  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( 𝑋  ∧  𝑊 )  ∨  𝑌 )  ∈  𝐵 )  | 
						
						
							| 32 | 
							
								26 30 17 31
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑌  ≤  𝑋 )  →  ( ( 𝑋  ∧  𝑊 )  ∨  𝑌 )  ∈  𝐵 )  | 
						
						
							| 33 | 
							
								1 3
							 | 
							latjcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑊  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑊  ∨  𝑌 )  ∈  𝐵 )  | 
						
						
							| 34 | 
							
								26 28 17 33
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑌  ≤  𝑋 )  →  ( 𝑊  ∨  𝑌 )  ∈  𝐵 )  | 
						
						
							| 35 | 
							
								1 4
							 | 
							latmcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  ( 𝑊  ∨  𝑌 )  ∈  𝐵 )  →  ( 𝑋  ∧  ( 𝑊  ∨  𝑌 ) )  ∈  𝐵 )  | 
						
						
							| 36 | 
							
								26 14 34 35
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑌  ≤  𝑋 )  →  ( 𝑋  ∧  ( 𝑊  ∨  𝑌 ) )  ∈  𝐵 )  | 
						
						
							| 37 | 
							
								1 8
							 | 
							opcon3b | 
							⊢ ( ( 𝐾  ∈  OP  ∧  ( ( 𝑋  ∧  𝑊 )  ∨  𝑌 )  ∈  𝐵  ∧  ( 𝑋  ∧  ( 𝑊  ∨  𝑌 ) )  ∈  𝐵 )  →  ( ( ( 𝑋  ∧  𝑊 )  ∨  𝑌 )  =  ( 𝑋  ∧  ( 𝑊  ∨  𝑌 ) )  ↔  ( ( oc ‘ 𝐾 ) ‘ ( 𝑋  ∧  ( 𝑊  ∨  𝑌 ) ) )  =  ( ( oc ‘ 𝐾 ) ‘ ( ( 𝑋  ∧  𝑊 )  ∨  𝑌 ) ) ) )  | 
						
						
							| 38 | 
							
								13 32 36 37
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑌  ≤  𝑋 )  →  ( ( ( 𝑋  ∧  𝑊 )  ∨  𝑌 )  =  ( 𝑋  ∧  ( 𝑊  ∨  𝑌 ) )  ↔  ( ( oc ‘ 𝐾 ) ‘ ( 𝑋  ∧  ( 𝑊  ∨  𝑌 ) ) )  =  ( ( oc ‘ 𝐾 ) ‘ ( ( 𝑋  ∧  𝑊 )  ∨  𝑌 ) ) ) )  | 
						
						
							| 39 | 
							
								
							 | 
							hlol | 
							⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  OL )  | 
						
						
							| 40 | 
							
								6 39
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑌  ≤  𝑋 )  →  𝐾  ∈  OL )  | 
						
						
							| 41 | 
							
								1 3 4 8
							 | 
							oldmm1 | 
							⊢ ( ( 𝐾  ∈  OL  ∧  𝑋  ∈  𝐵  ∧  ( 𝑊  ∨  𝑌 )  ∈  𝐵 )  →  ( ( oc ‘ 𝐾 ) ‘ ( 𝑋  ∧  ( 𝑊  ∨  𝑌 ) ) )  =  ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ ( 𝑊  ∨  𝑌 ) ) ) )  | 
						
						
							| 42 | 
							
								40 14 34 41
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑌  ≤  𝑋 )  →  ( ( oc ‘ 𝐾 ) ‘ ( 𝑋  ∧  ( 𝑊  ∨  𝑌 ) ) )  =  ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ ( 𝑊  ∨  𝑌 ) ) ) )  | 
						
						
							| 43 | 
							
								1 3 4 8
							 | 
							oldmj1 | 
							⊢ ( ( 𝐾  ∈  OL  ∧  𝑊  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( oc ‘ 𝐾 ) ‘ ( 𝑊  ∨  𝑌 ) )  =  ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 )  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) )  | 
						
						
							| 44 | 
							
								40 28 17 43
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑌  ≤  𝑋 )  →  ( ( oc ‘ 𝐾 ) ‘ ( 𝑊  ∨  𝑌 ) )  =  ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 )  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) )  | 
						
						
							| 45 | 
							
								44
							 | 
							oveq2d | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑌  ≤  𝑋 )  →  ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ ( 𝑊  ∨  𝑌 ) ) )  =  ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 )  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) )  | 
						
						
							| 46 | 
							
								42 45
							 | 
							eqtrd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑌  ≤  𝑋 )  →  ( ( oc ‘ 𝐾 ) ‘ ( 𝑋  ∧  ( 𝑊  ∨  𝑌 ) ) )  =  ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 )  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) )  | 
						
						
							| 47 | 
							
								1 3 4 8
							 | 
							oldmj1 | 
							⊢ ( ( 𝐾  ∈  OL  ∧  ( 𝑋  ∧  𝑊 )  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( oc ‘ 𝐾 ) ‘ ( ( 𝑋  ∧  𝑊 )  ∨  𝑌 ) )  =  ( ( ( oc ‘ 𝐾 ) ‘ ( 𝑋  ∧  𝑊 ) )  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) )  | 
						
						
							| 48 | 
							
								40 30 17 47
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑌  ≤  𝑋 )  →  ( ( oc ‘ 𝐾 ) ‘ ( ( 𝑋  ∧  𝑊 )  ∨  𝑌 ) )  =  ( ( ( oc ‘ 𝐾 ) ‘ ( 𝑋  ∧  𝑊 ) )  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) )  | 
						
						
							| 49 | 
							
								1 3 4 8
							 | 
							oldmm1 | 
							⊢ ( ( 𝐾  ∈  OL  ∧  𝑋  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  →  ( ( oc ‘ 𝐾 ) ‘ ( 𝑋  ∧  𝑊 ) )  =  ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) )  | 
						
						
							| 50 | 
							
								40 14 28 49
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑌  ≤  𝑋 )  →  ( ( oc ‘ 𝐾 ) ‘ ( 𝑋  ∧  𝑊 ) )  =  ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) )  | 
						
						
							| 51 | 
							
								50
							 | 
							oveq1d | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑌  ≤  𝑋 )  →  ( ( ( oc ‘ 𝐾 ) ‘ ( 𝑋  ∧  𝑊 ) )  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) )  =  ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) )  | 
						
						
							| 52 | 
							
								48 51
							 | 
							eqtrd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑌  ≤  𝑋 )  →  ( ( oc ‘ 𝐾 ) ‘ ( ( 𝑋  ∧  𝑊 )  ∨  𝑌 ) )  =  ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) )  | 
						
						
							| 53 | 
							
								46 52
							 | 
							eqeq12d | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑌  ≤  𝑋 )  →  ( ( ( oc ‘ 𝐾 ) ‘ ( 𝑋  ∧  ( 𝑊  ∨  𝑌 ) ) )  =  ( ( oc ‘ 𝐾 ) ‘ ( ( 𝑋  ∧  𝑊 )  ∨  𝑌 ) )  ↔  ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 )  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) )  =  ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) )  | 
						
						
							| 54 | 
							
								38 53
							 | 
							bitrd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑌  ≤  𝑋 )  →  ( ( ( 𝑋  ∧  𝑊 )  ∨  𝑌 )  =  ( 𝑋  ∧  ( 𝑊  ∨  𝑌 ) )  ↔  ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 )  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) )  =  ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) )  | 
						
						
							| 55 | 
							
								25 54
							 | 
							mpbird | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑌  ≤  𝑋 )  →  ( ( 𝑋  ∧  𝑊 )  ∨  𝑌 )  =  ( 𝑋  ∧  ( 𝑊  ∨  𝑌 ) ) )  |