| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lhpmod.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | lhpmod.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 3 |  | lhpmod.j | ⊢  ∨   =  ( join ‘ 𝐾 ) | 
						
							| 4 |  | lhpmod.m | ⊢  ∧   =  ( meet ‘ 𝐾 ) | 
						
							| 5 |  | lhpmod.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 6 |  | simp1l | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  ≤  𝑊 )  →  𝐾  ∈  HL ) | 
						
							| 7 |  | simp1r | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  ≤  𝑊 )  →  𝑊  ∈  𝐻 ) | 
						
							| 8 |  | eqid | ⊢ ( oc ‘ 𝐾 )  =  ( oc ‘ 𝐾 ) | 
						
							| 9 |  | eqid | ⊢ ( Atoms ‘ 𝐾 )  =  ( Atoms ‘ 𝐾 ) | 
						
							| 10 | 8 9 5 | lhpocat | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →  ( ( oc ‘ 𝐾 ) ‘ 𝑊 )  ∈  ( Atoms ‘ 𝐾 ) ) | 
						
							| 11 | 6 7 10 | syl2anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  ≤  𝑊 )  →  ( ( oc ‘ 𝐾 ) ‘ 𝑊 )  ∈  ( Atoms ‘ 𝐾 ) ) | 
						
							| 12 |  | hlop | ⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  OP ) | 
						
							| 13 | 6 12 | syl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  ≤  𝑊 )  →  𝐾  ∈  OP ) | 
						
							| 14 |  | simp2l | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  ≤  𝑊 )  →  𝑋  ∈  𝐵 ) | 
						
							| 15 | 1 8 | opoccl | ⊢ ( ( 𝐾  ∈  OP  ∧  𝑋  ∈  𝐵 )  →  ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∈  𝐵 ) | 
						
							| 16 | 13 14 15 | syl2anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  ≤  𝑊 )  →  ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∈  𝐵 ) | 
						
							| 17 |  | simp2r | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  ≤  𝑊 )  →  𝑌  ∈  𝐵 ) | 
						
							| 18 | 1 8 | opoccl | ⊢ ( ( 𝐾  ∈  OP  ∧  𝑌  ∈  𝐵 )  →  ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∈  𝐵 ) | 
						
							| 19 | 13 17 18 | syl2anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  ≤  𝑊 )  →  ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∈  𝐵 ) | 
						
							| 20 |  | simp3 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  ≤  𝑊 )  →  𝑋  ≤  𝑊 ) | 
						
							| 21 | 1 5 | lhpbase | ⊢ ( 𝑊  ∈  𝐻  →  𝑊  ∈  𝐵 ) | 
						
							| 22 | 7 21 | syl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  ≤  𝑊 )  →  𝑊  ∈  𝐵 ) | 
						
							| 23 | 1 2 8 | oplecon3b | ⊢ ( ( 𝐾  ∈  OP  ∧  𝑋  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  →  ( 𝑋  ≤  𝑊  ↔  ( ( oc ‘ 𝐾 ) ‘ 𝑊 )  ≤  ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) | 
						
							| 24 | 13 14 22 23 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  ≤  𝑊 )  →  ( 𝑋  ≤  𝑊  ↔  ( ( oc ‘ 𝐾 ) ‘ 𝑊 )  ≤  ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) | 
						
							| 25 | 20 24 | mpbid | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  ≤  𝑊 )  →  ( ( oc ‘ 𝐾 ) ‘ 𝑊 )  ≤  ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) | 
						
							| 26 | 1 2 3 4 9 | atmod2i1 | ⊢ ( ( 𝐾  ∈  HL  ∧  ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 )  ∈  ( Atoms ‘ 𝐾 )  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∈  𝐵  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∈  𝐵 )  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑊 )  ≤  ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) )  →  ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  =  ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∧  ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) | 
						
							| 27 | 6 11 16 19 25 26 | syl131anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  ≤  𝑊 )  →  ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  =  ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∧  ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) | 
						
							| 28 | 6 | hllatd | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  ≤  𝑊 )  →  𝐾  ∈  Lat ) | 
						
							| 29 | 1 4 | latmcl | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑌  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  →  ( 𝑌  ∧  𝑊 )  ∈  𝐵 ) | 
						
							| 30 | 28 17 22 29 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  ≤  𝑊 )  →  ( 𝑌  ∧  𝑊 )  ∈  𝐵 ) | 
						
							| 31 | 1 3 | latjcl | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  ( 𝑌  ∧  𝑊 )  ∈  𝐵 )  →  ( 𝑋  ∨  ( 𝑌  ∧  𝑊 ) )  ∈  𝐵 ) | 
						
							| 32 | 28 14 30 31 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  ≤  𝑊 )  →  ( 𝑋  ∨  ( 𝑌  ∧  𝑊 ) )  ∈  𝐵 ) | 
						
							| 33 | 1 3 | latjcl | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  ∨  𝑌 )  ∈  𝐵 ) | 
						
							| 34 | 28 14 17 33 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  ≤  𝑊 )  →  ( 𝑋  ∨  𝑌 )  ∈  𝐵 ) | 
						
							| 35 | 1 4 | latmcl | ⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑋  ∨  𝑌 )  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  →  ( ( 𝑋  ∨  𝑌 )  ∧  𝑊 )  ∈  𝐵 ) | 
						
							| 36 | 28 34 22 35 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  ≤  𝑊 )  →  ( ( 𝑋  ∨  𝑌 )  ∧  𝑊 )  ∈  𝐵 ) | 
						
							| 37 | 1 8 | opcon3b | ⊢ ( ( 𝐾  ∈  OP  ∧  ( 𝑋  ∨  ( 𝑌  ∧  𝑊 ) )  ∈  𝐵  ∧  ( ( 𝑋  ∨  𝑌 )  ∧  𝑊 )  ∈  𝐵 )  →  ( ( 𝑋  ∨  ( 𝑌  ∧  𝑊 ) )  =  ( ( 𝑋  ∨  𝑌 )  ∧  𝑊 )  ↔  ( ( oc ‘ 𝐾 ) ‘ ( ( 𝑋  ∨  𝑌 )  ∧  𝑊 ) )  =  ( ( oc ‘ 𝐾 ) ‘ ( 𝑋  ∨  ( 𝑌  ∧  𝑊 ) ) ) ) ) | 
						
							| 38 | 13 32 36 37 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  ≤  𝑊 )  →  ( ( 𝑋  ∨  ( 𝑌  ∧  𝑊 ) )  =  ( ( 𝑋  ∨  𝑌 )  ∧  𝑊 )  ↔  ( ( oc ‘ 𝐾 ) ‘ ( ( 𝑋  ∨  𝑌 )  ∧  𝑊 ) )  =  ( ( oc ‘ 𝐾 ) ‘ ( 𝑋  ∨  ( 𝑌  ∧  𝑊 ) ) ) ) ) | 
						
							| 39 |  | hlol | ⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  OL ) | 
						
							| 40 | 6 39 | syl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  ≤  𝑊 )  →  𝐾  ∈  OL ) | 
						
							| 41 | 1 3 4 8 | oldmm1 | ⊢ ( ( 𝐾  ∈  OL  ∧  ( 𝑋  ∨  𝑌 )  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  →  ( ( oc ‘ 𝐾 ) ‘ ( ( 𝑋  ∨  𝑌 )  ∧  𝑊 ) )  =  ( ( ( oc ‘ 𝐾 ) ‘ ( 𝑋  ∨  𝑌 ) )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 42 | 40 34 22 41 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  ≤  𝑊 )  →  ( ( oc ‘ 𝐾 ) ‘ ( ( 𝑋  ∨  𝑌 )  ∧  𝑊 ) )  =  ( ( ( oc ‘ 𝐾 ) ‘ ( 𝑋  ∨  𝑌 ) )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 43 | 1 3 4 8 | oldmj1 | ⊢ ( ( 𝐾  ∈  OL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( oc ‘ 𝐾 ) ‘ ( 𝑋  ∨  𝑌 ) )  =  ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) | 
						
							| 44 | 40 14 17 43 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  ≤  𝑊 )  →  ( ( oc ‘ 𝐾 ) ‘ ( 𝑋  ∨  𝑌 ) )  =  ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) | 
						
							| 45 | 44 | oveq1d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  ≤  𝑊 )  →  ( ( ( oc ‘ 𝐾 ) ‘ ( 𝑋  ∨  𝑌 ) )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  =  ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 46 | 42 45 | eqtrd | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  ≤  𝑊 )  →  ( ( oc ‘ 𝐾 ) ‘ ( ( 𝑋  ∨  𝑌 )  ∧  𝑊 ) )  =  ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 47 | 1 3 4 8 | oldmj1 | ⊢ ( ( 𝐾  ∈  OL  ∧  𝑋  ∈  𝐵  ∧  ( 𝑌  ∧  𝑊 )  ∈  𝐵 )  →  ( ( oc ‘ 𝐾 ) ‘ ( 𝑋  ∨  ( 𝑌  ∧  𝑊 ) ) )  =  ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∧  ( ( oc ‘ 𝐾 ) ‘ ( 𝑌  ∧  𝑊 ) ) ) ) | 
						
							| 48 | 40 14 30 47 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  ≤  𝑊 )  →  ( ( oc ‘ 𝐾 ) ‘ ( 𝑋  ∨  ( 𝑌  ∧  𝑊 ) ) )  =  ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∧  ( ( oc ‘ 𝐾 ) ‘ ( 𝑌  ∧  𝑊 ) ) ) ) | 
						
							| 49 | 1 3 4 8 | oldmm1 | ⊢ ( ( 𝐾  ∈  OL  ∧  𝑌  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  →  ( ( oc ‘ 𝐾 ) ‘ ( 𝑌  ∧  𝑊 ) )  =  ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 50 | 40 17 22 49 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  ≤  𝑊 )  →  ( ( oc ‘ 𝐾 ) ‘ ( 𝑌  ∧  𝑊 ) )  =  ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 51 | 50 | oveq2d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  ≤  𝑊 )  →  ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∧  ( ( oc ‘ 𝐾 ) ‘ ( 𝑌  ∧  𝑊 ) ) )  =  ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∧  ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) | 
						
							| 52 | 48 51 | eqtrd | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  ≤  𝑊 )  →  ( ( oc ‘ 𝐾 ) ‘ ( 𝑋  ∨  ( 𝑌  ∧  𝑊 ) ) )  =  ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∧  ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) | 
						
							| 53 | 46 52 | eqeq12d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  ≤  𝑊 )  →  ( ( ( oc ‘ 𝐾 ) ‘ ( ( 𝑋  ∨  𝑌 )  ∧  𝑊 ) )  =  ( ( oc ‘ 𝐾 ) ‘ ( 𝑋  ∨  ( 𝑌  ∧  𝑊 ) ) )  ↔  ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  =  ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∧  ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) | 
						
							| 54 | 38 53 | bitrd | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  ≤  𝑊 )  →  ( ( 𝑋  ∨  ( 𝑌  ∧  𝑊 ) )  =  ( ( 𝑋  ∨  𝑌 )  ∧  𝑊 )  ↔  ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  =  ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∧  ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∨  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) ) | 
						
							| 55 | 27 54 | mpbird | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  ≤  𝑊 )  →  ( 𝑋  ∨  ( 𝑌  ∧  𝑊 ) )  =  ( ( 𝑋  ∨  𝑌 )  ∧  𝑊 ) ) |