| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lhpne0.z | ⊢  0   =  ( 0. ‘ 𝐾 ) | 
						
							| 2 |  | lhpne0.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 3 |  | eqid | ⊢ ( lt ‘ 𝐾 )  =  ( lt ‘ 𝐾 ) | 
						
							| 4 | 3 1 2 | lhp0lt | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →   0  ( lt ‘ 𝐾 ) 𝑊 ) | 
						
							| 5 |  | simpl | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →  𝐾  ∈  HL ) | 
						
							| 6 |  | hlop | ⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  OP ) | 
						
							| 7 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 8 | 7 1 | op0cl | ⊢ ( 𝐾  ∈  OP  →   0   ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 9 | 6 8 | syl | ⊢ ( 𝐾  ∈  HL  →   0   ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →   0   ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 11 |  | simpr | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →  𝑊  ∈  𝐻 ) | 
						
							| 12 | 3 | pltne | ⊢ ( ( 𝐾  ∈  HL  ∧   0   ∈  ( Base ‘ 𝐾 )  ∧  𝑊  ∈  𝐻 )  →  (  0  ( lt ‘ 𝐾 ) 𝑊  →   0   ≠  𝑊 ) ) | 
						
							| 13 | 5 10 11 12 | syl3anc | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →  (  0  ( lt ‘ 𝐾 ) 𝑊  →   0   ≠  𝑊 ) ) | 
						
							| 14 | 4 13 | mpd | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →   0   ≠  𝑊 ) | 
						
							| 15 | 14 | necomd | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →  𝑊  ≠   0  ) |