Description: The orthocomplement of a co-atom (lattice hyperplane) is an atom. (Contributed by NM, 18-May-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lhpoc.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
lhpoc.o | ⊢ ⊥ = ( oc ‘ 𝐾 ) | ||
lhpoc.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
lhpoc.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | ||
Assertion | lhpoc | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐵 ) → ( 𝑊 ∈ 𝐻 ↔ ( ⊥ ‘ 𝑊 ) ∈ 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lhpoc.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
2 | lhpoc.o | ⊢ ⊥ = ( oc ‘ 𝐾 ) | |
3 | lhpoc.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
4 | lhpoc.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | |
5 | eqid | ⊢ ( 1. ‘ 𝐾 ) = ( 1. ‘ 𝐾 ) | |
6 | eqid | ⊢ ( ⋖ ‘ 𝐾 ) = ( ⋖ ‘ 𝐾 ) | |
7 | 1 5 6 4 | islhp2 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐵 ) → ( 𝑊 ∈ 𝐻 ↔ 𝑊 ( ⋖ ‘ 𝐾 ) ( 1. ‘ 𝐾 ) ) ) |
8 | 1 5 2 6 3 | 1cvrco | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐵 ) → ( 𝑊 ( ⋖ ‘ 𝐾 ) ( 1. ‘ 𝐾 ) ↔ ( ⊥ ‘ 𝑊 ) ∈ 𝐴 ) ) |
9 | 7 8 | bitrd | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐵 ) → ( 𝑊 ∈ 𝐻 ↔ ( ⊥ ‘ 𝑊 ) ∈ 𝐴 ) ) |