Metamath Proof Explorer


Theorem lhpoc

Description: The orthocomplement of a co-atom (lattice hyperplane) is an atom. (Contributed by NM, 18-May-2012)

Ref Expression
Hypotheses lhpoc.b 𝐵 = ( Base ‘ 𝐾 )
lhpoc.o = ( oc ‘ 𝐾 )
lhpoc.a 𝐴 = ( Atoms ‘ 𝐾 )
lhpoc.h 𝐻 = ( LHyp ‘ 𝐾 )
Assertion lhpoc ( ( 𝐾 ∈ HL ∧ 𝑊𝐵 ) → ( 𝑊𝐻 ↔ ( 𝑊 ) ∈ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 lhpoc.b 𝐵 = ( Base ‘ 𝐾 )
2 lhpoc.o = ( oc ‘ 𝐾 )
3 lhpoc.a 𝐴 = ( Atoms ‘ 𝐾 )
4 lhpoc.h 𝐻 = ( LHyp ‘ 𝐾 )
5 eqid ( 1. ‘ 𝐾 ) = ( 1. ‘ 𝐾 )
6 eqid ( ⋖ ‘ 𝐾 ) = ( ⋖ ‘ 𝐾 )
7 1 5 6 4 islhp2 ( ( 𝐾 ∈ HL ∧ 𝑊𝐵 ) → ( 𝑊𝐻𝑊 ( ⋖ ‘ 𝐾 ) ( 1. ‘ 𝐾 ) ) )
8 1 5 2 6 3 1cvrco ( ( 𝐾 ∈ HL ∧ 𝑊𝐵 ) → ( 𝑊 ( ⋖ ‘ 𝐾 ) ( 1. ‘ 𝐾 ) ↔ ( 𝑊 ) ∈ 𝐴 ) )
9 7 8 bitrd ( ( 𝐾 ∈ HL ∧ 𝑊𝐵 ) → ( 𝑊𝐻 ↔ ( 𝑊 ) ∈ 𝐴 ) )