Description: The orthocomplement of a co-atom is an atom. (Contributed by NM, 9-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lhpocat.o | ⊢ ⊥ = ( oc ‘ 𝐾 ) | |
| lhpocat.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| lhpocat.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | ||
| Assertion | lhpocat | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ⊥ ‘ 𝑊 ) ∈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lhpocat.o | ⊢ ⊥ = ( oc ‘ 𝐾 ) | |
| 2 | lhpocat.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 3 | lhpocat.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | |
| 4 | simpr | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝑊 ∈ 𝐻 ) | |
| 5 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 6 | 5 3 | lhpbase | ⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
| 7 | 5 1 2 3 | lhpoc | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑊 ∈ 𝐻 ↔ ( ⊥ ‘ 𝑊 ) ∈ 𝐴 ) ) |
| 8 | 6 7 | sylan2 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑊 ∈ 𝐻 ↔ ( ⊥ ‘ 𝑊 ) ∈ 𝐴 ) ) |
| 9 | 4 8 | mpbid | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ⊥ ‘ 𝑊 ) ∈ 𝐴 ) |