Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
lhpocnel
Metamath Proof Explorer
Description: The orthocomplement of a co-atom is an atom not under it. Provides a
convenient construction when we need the existence of any object with
this property. (Contributed by NM , 25-May-2012)
Ref
Expression
Hypotheses
lhpocnel.l
⊢ ≤ = ( le ‘ 𝐾 )
lhpocnel.o
⊢ ⊥ = ( oc ‘ 𝐾 )
lhpocnel.a
⊢ 𝐴 = ( Atoms ‘ 𝐾 )
lhpocnel.h
⊢ 𝐻 = ( LHyp ‘ 𝐾 )
Assertion
lhpocnel
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ( ⊥ ‘ 𝑊 ) ∈ 𝐴 ∧ ¬ ( ⊥ ‘ 𝑊 ) ≤ 𝑊 ) )
Proof
Step
Hyp
Ref
Expression
1
lhpocnel.l
⊢ ≤ = ( le ‘ 𝐾 )
2
lhpocnel.o
⊢ ⊥ = ( oc ‘ 𝐾 )
3
lhpocnel.a
⊢ 𝐴 = ( Atoms ‘ 𝐾 )
4
lhpocnel.h
⊢ 𝐻 = ( LHyp ‘ 𝐾 )
5
2 3 4
lhpocat
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ⊥ ‘ 𝑊 ) ∈ 𝐴 )
6
1 2 4
lhpocnle
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ¬ ( ⊥ ‘ 𝑊 ) ≤ 𝑊 )
7
5 6
jca
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ( ⊥ ‘ 𝑊 ) ∈ 𝐴 ∧ ¬ ( ⊥ ‘ 𝑊 ) ≤ 𝑊 ) )