Metamath Proof Explorer


Theorem lhpocnel

Description: The orthocomplement of a co-atom is an atom not under it. Provides a convenient construction when we need the existence of any object with this property. (Contributed by NM, 25-May-2012)

Ref Expression
Hypotheses lhpocnel.l = ( le ‘ 𝐾 )
lhpocnel.o = ( oc ‘ 𝐾 )
lhpocnel.a 𝐴 = ( Atoms ‘ 𝐾 )
lhpocnel.h 𝐻 = ( LHyp ‘ 𝐾 )
Assertion lhpocnel ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( ( 𝑊 ) ∈ 𝐴 ∧ ¬ ( 𝑊 ) 𝑊 ) )

Proof

Step Hyp Ref Expression
1 lhpocnel.l = ( le ‘ 𝐾 )
2 lhpocnel.o = ( oc ‘ 𝐾 )
3 lhpocnel.a 𝐴 = ( Atoms ‘ 𝐾 )
4 lhpocnel.h 𝐻 = ( LHyp ‘ 𝐾 )
5 2 3 4 lhpocat ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 𝑊 ) ∈ 𝐴 )
6 1 2 4 lhpocnle ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ¬ ( 𝑊 ) 𝑊 )
7 5 6 jca ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( ( 𝑊 ) ∈ 𝐴 ∧ ¬ ( 𝑊 ) 𝑊 ) )