Metamath Proof Explorer


Theorem lhpocnel2

Description: The orthocomplement of a co-atom is an atom not under it. Provides a convenient construction when we need the existence of any object with this property. (Contributed by NM, 20-Feb-2014)

Ref Expression
Hypotheses lhpocnel2.l = ( le ‘ 𝐾 )
lhpocnel2.a 𝐴 = ( Atoms ‘ 𝐾 )
lhpocnel2.h 𝐻 = ( LHyp ‘ 𝐾 )
lhpocnel2.p 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 )
Assertion lhpocnel2 ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )

Proof

Step Hyp Ref Expression
1 lhpocnel2.l = ( le ‘ 𝐾 )
2 lhpocnel2.a 𝐴 = ( Atoms ‘ 𝐾 )
3 lhpocnel2.h 𝐻 = ( LHyp ‘ 𝐾 )
4 lhpocnel2.p 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 )
5 eqid ( oc ‘ 𝐾 ) = ( oc ‘ 𝐾 )
6 1 5 2 3 lhpocnel ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ∈ 𝐴 ∧ ¬ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) 𝑊 ) )
7 4 eleq1i ( 𝑃𝐴 ↔ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ∈ 𝐴 )
8 4 breq1i ( 𝑃 𝑊 ↔ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) 𝑊 )
9 8 notbii ( ¬ 𝑃 𝑊 ↔ ¬ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) 𝑊 )
10 7 9 anbi12i ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ↔ ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ∈ 𝐴 ∧ ¬ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) 𝑊 ) )
11 6 10 sylibr ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )