Step |
Hyp |
Ref |
Expression |
1 |
|
lhpocnel2.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
lhpocnel2.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
3 |
|
lhpocnel2.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
4 |
|
lhpocnel2.p |
⊢ 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
eqid |
⊢ ( oc ‘ 𝐾 ) = ( oc ‘ 𝐾 ) |
6 |
1 5 2 3
|
lhpocnel |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ∈ 𝐴 ∧ ¬ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ≤ 𝑊 ) ) |
7 |
4
|
eleq1i |
⊢ ( 𝑃 ∈ 𝐴 ↔ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ∈ 𝐴 ) |
8 |
4
|
breq1i |
⊢ ( 𝑃 ≤ 𝑊 ↔ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ≤ 𝑊 ) |
9 |
8
|
notbii |
⊢ ( ¬ 𝑃 ≤ 𝑊 ↔ ¬ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ≤ 𝑊 ) |
10 |
7 9
|
anbi12i |
⊢ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ↔ ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ∈ 𝐴 ∧ ¬ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ≤ 𝑊 ) ) |
11 |
6 10
|
sylibr |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |