| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lhpocnle.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 2 |
|
lhpocnle.o |
⊢ ⊥ = ( oc ‘ 𝐾 ) |
| 3 |
|
lhpocnle.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 4 |
|
hlatl |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ AtLat ) |
| 5 |
4
|
adantr |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝐾 ∈ AtLat ) |
| 6 |
|
simpr |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝑊 ∈ 𝐻 ) |
| 7 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 8 |
7 3
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
| 9 |
|
eqid |
⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) |
| 10 |
7 2 9 3
|
lhpoc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑊 ∈ 𝐻 ↔ ( ⊥ ‘ 𝑊 ) ∈ ( Atoms ‘ 𝐾 ) ) ) |
| 11 |
8 10
|
sylan2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑊 ∈ 𝐻 ↔ ( ⊥ ‘ 𝑊 ) ∈ ( Atoms ‘ 𝐾 ) ) ) |
| 12 |
6 11
|
mpbid |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ⊥ ‘ 𝑊 ) ∈ ( Atoms ‘ 𝐾 ) ) |
| 13 |
|
eqid |
⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) |
| 14 |
13 9
|
atn0 |
⊢ ( ( 𝐾 ∈ AtLat ∧ ( ⊥ ‘ 𝑊 ) ∈ ( Atoms ‘ 𝐾 ) ) → ( ⊥ ‘ 𝑊 ) ≠ ( 0. ‘ 𝐾 ) ) |
| 15 |
5 12 14
|
syl2anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ⊥ ‘ 𝑊 ) ≠ ( 0. ‘ 𝐾 ) ) |
| 16 |
15
|
neneqd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ¬ ( ⊥ ‘ 𝑊 ) = ( 0. ‘ 𝐾 ) ) |
| 17 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ⊥ ‘ 𝑊 ) ≤ 𝑊 ) → ( ⊥ ‘ 𝑊 ) ≤ 𝑊 ) |
| 18 |
|
hllat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) |
| 19 |
18
|
ad2antrr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ⊥ ‘ 𝑊 ) ≤ 𝑊 ) → 𝐾 ∈ Lat ) |
| 20 |
|
hlop |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OP ) |
| 21 |
20
|
ad2antrr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ⊥ ‘ 𝑊 ) ≤ 𝑊 ) → 𝐾 ∈ OP ) |
| 22 |
8
|
ad2antlr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ⊥ ‘ 𝑊 ) ≤ 𝑊 ) → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
| 23 |
7 2
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( ⊥ ‘ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) |
| 24 |
21 22 23
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ⊥ ‘ 𝑊 ) ≤ 𝑊 ) → ( ⊥ ‘ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) |
| 25 |
7 1
|
latref |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ⊥ ‘ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) → ( ⊥ ‘ 𝑊 ) ≤ ( ⊥ ‘ 𝑊 ) ) |
| 26 |
19 24 25
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ⊥ ‘ 𝑊 ) ≤ 𝑊 ) → ( ⊥ ‘ 𝑊 ) ≤ ( ⊥ ‘ 𝑊 ) ) |
| 27 |
|
eqid |
⊢ ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 ) |
| 28 |
7 1 27
|
latlem12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( ⊥ ‘ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ∧ ( ⊥ ‘ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( ( ⊥ ‘ 𝑊 ) ≤ 𝑊 ∧ ( ⊥ ‘ 𝑊 ) ≤ ( ⊥ ‘ 𝑊 ) ) ↔ ( ⊥ ‘ 𝑊 ) ≤ ( 𝑊 ( meet ‘ 𝐾 ) ( ⊥ ‘ 𝑊 ) ) ) ) |
| 29 |
19 24 22 24 28
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ⊥ ‘ 𝑊 ) ≤ 𝑊 ) → ( ( ( ⊥ ‘ 𝑊 ) ≤ 𝑊 ∧ ( ⊥ ‘ 𝑊 ) ≤ ( ⊥ ‘ 𝑊 ) ) ↔ ( ⊥ ‘ 𝑊 ) ≤ ( 𝑊 ( meet ‘ 𝐾 ) ( ⊥ ‘ 𝑊 ) ) ) ) |
| 30 |
17 26 29
|
mpbi2and |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ⊥ ‘ 𝑊 ) ≤ 𝑊 ) → ( ⊥ ‘ 𝑊 ) ≤ ( 𝑊 ( meet ‘ 𝐾 ) ( ⊥ ‘ 𝑊 ) ) ) |
| 31 |
7 2 27 13
|
opnoncon |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑊 ( meet ‘ 𝐾 ) ( ⊥ ‘ 𝑊 ) ) = ( 0. ‘ 𝐾 ) ) |
| 32 |
21 22 31
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ⊥ ‘ 𝑊 ) ≤ 𝑊 ) → ( 𝑊 ( meet ‘ 𝐾 ) ( ⊥ ‘ 𝑊 ) ) = ( 0. ‘ 𝐾 ) ) |
| 33 |
30 32
|
breqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ⊥ ‘ 𝑊 ) ≤ 𝑊 ) → ( ⊥ ‘ 𝑊 ) ≤ ( 0. ‘ 𝐾 ) ) |
| 34 |
7 1 13
|
ople0 |
⊢ ( ( 𝐾 ∈ OP ∧ ( ⊥ ‘ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( ⊥ ‘ 𝑊 ) ≤ ( 0. ‘ 𝐾 ) ↔ ( ⊥ ‘ 𝑊 ) = ( 0. ‘ 𝐾 ) ) ) |
| 35 |
21 24 34
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ⊥ ‘ 𝑊 ) ≤ 𝑊 ) → ( ( ⊥ ‘ 𝑊 ) ≤ ( 0. ‘ 𝐾 ) ↔ ( ⊥ ‘ 𝑊 ) = ( 0. ‘ 𝐾 ) ) ) |
| 36 |
33 35
|
mpbid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ⊥ ‘ 𝑊 ) ≤ 𝑊 ) → ( ⊥ ‘ 𝑊 ) = ( 0. ‘ 𝐾 ) ) |
| 37 |
16 36
|
mtand |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ¬ ( ⊥ ‘ 𝑊 ) ≤ 𝑊 ) |