| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lhprelat3.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
lhprelat3.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 3 |
|
lhprelat3.s |
⊢ < = ( lt ‘ 𝐾 ) |
| 4 |
|
lhprelat3.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
| 5 |
|
lhprelat3.c |
⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) |
| 6 |
|
lhprelat3.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 7 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) → 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) |
| 8 |
|
simpll1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) → 𝐾 ∈ HL ) |
| 9 |
|
eqid |
⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) |
| 10 |
1 9
|
atbase |
⊢ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) → 𝑝 ∈ 𝐵 ) |
| 11 |
10
|
adantl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) → 𝑝 ∈ 𝐵 ) |
| 12 |
|
eqid |
⊢ ( oc ‘ 𝐾 ) = ( oc ‘ 𝐾 ) |
| 13 |
1 12 9 6
|
lhpoc2N |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑝 ∈ 𝐵 ) → ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ↔ ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ∈ 𝐻 ) ) |
| 14 |
8 11 13
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) → ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ↔ ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ∈ 𝐻 ) ) |
| 15 |
7 14
|
mpbid |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) → ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ∈ 𝐻 ) |
| 16 |
15
|
adantr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) ≤ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) → ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ∈ 𝐻 ) |
| 17 |
|
hlop |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OP ) |
| 18 |
8 17
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) → 𝐾 ∈ OP ) |
| 19 |
8
|
hllatd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) → 𝐾 ∈ Lat ) |
| 20 |
|
simpll3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) → 𝑌 ∈ 𝐵 ) |
| 21 |
1 12
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑝 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ∈ 𝐵 ) |
| 22 |
18 11 21
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) → ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ∈ 𝐵 ) |
| 23 |
1 4
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ∈ 𝐵 ) → ( 𝑌 ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ) ∈ 𝐵 ) |
| 24 |
19 20 22 23
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) → ( 𝑌 ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ) ∈ 𝐵 ) |
| 25 |
1 12 5
|
cvrcon3b |
⊢ ( ( 𝐾 ∈ OP ∧ ( 𝑌 ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑌 ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ) 𝐶 𝑌 ↔ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) 𝐶 ( ( oc ‘ 𝐾 ) ‘ ( 𝑌 ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ) ) ) ) |
| 26 |
18 24 20 25
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) → ( ( 𝑌 ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ) 𝐶 𝑌 ↔ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) 𝐶 ( ( oc ‘ 𝐾 ) ‘ ( 𝑌 ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ) ) ) ) |
| 27 |
|
hlol |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OL ) |
| 28 |
8 27
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) → 𝐾 ∈ OL ) |
| 29 |
|
eqid |
⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) |
| 30 |
1 29 4 12
|
oldmm3N |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑌 ∈ 𝐵 ∧ 𝑝 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ ( 𝑌 ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ) ) = ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) ) |
| 31 |
28 20 11 30
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) → ( ( oc ‘ 𝐾 ) ‘ ( 𝑌 ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ) ) = ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) ) |
| 32 |
31
|
breq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) 𝐶 ( ( oc ‘ 𝐾 ) ‘ ( 𝑌 ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ) ) ↔ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) ) ) |
| 33 |
26 32
|
bitr2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) ↔ ( 𝑌 ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ) 𝐶 𝑌 ) ) |
| 34 |
|
simpll2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) → 𝑋 ∈ 𝐵 ) |
| 35 |
1 2 12
|
oplecon3b |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑌 ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ) ∈ 𝐵 ) → ( 𝑋 ≤ ( 𝑌 ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ) ↔ ( ( oc ‘ 𝐾 ) ‘ ( 𝑌 ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ) ) ≤ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) |
| 36 |
18 34 24 35
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) → ( 𝑋 ≤ ( 𝑌 ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ) ↔ ( ( oc ‘ 𝐾 ) ‘ ( 𝑌 ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ) ) ≤ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) |
| 37 |
31
|
breq1d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) → ( ( ( oc ‘ 𝐾 ) ‘ ( 𝑌 ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ) ) ≤ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ↔ ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) ≤ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) |
| 38 |
36 37
|
bitr2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) → ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) ≤ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ↔ 𝑋 ≤ ( 𝑌 ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ) ) ) |
| 39 |
33 38
|
anbi12d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) → ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) ≤ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ↔ ( ( 𝑌 ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ) 𝐶 𝑌 ∧ 𝑋 ≤ ( 𝑌 ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ) ) ) ) |
| 40 |
39
|
biimpa |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) ≤ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) → ( ( 𝑌 ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ) 𝐶 𝑌 ∧ 𝑋 ≤ ( 𝑌 ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ) ) ) |
| 41 |
40
|
ancomd |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) ≤ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) → ( 𝑋 ≤ ( 𝑌 ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ) ∧ ( 𝑌 ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ) 𝐶 𝑌 ) ) |
| 42 |
|
oveq2 |
⊢ ( 𝑤 = ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) → ( 𝑌 ∧ 𝑤 ) = ( 𝑌 ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ) ) |
| 43 |
42
|
breq2d |
⊢ ( 𝑤 = ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) → ( 𝑋 ≤ ( 𝑌 ∧ 𝑤 ) ↔ 𝑋 ≤ ( 𝑌 ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ) ) ) |
| 44 |
42
|
breq1d |
⊢ ( 𝑤 = ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) → ( ( 𝑌 ∧ 𝑤 ) 𝐶 𝑌 ↔ ( 𝑌 ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ) 𝐶 𝑌 ) ) |
| 45 |
43 44
|
anbi12d |
⊢ ( 𝑤 = ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) → ( ( 𝑋 ≤ ( 𝑌 ∧ 𝑤 ) ∧ ( 𝑌 ∧ 𝑤 ) 𝐶 𝑌 ) ↔ ( 𝑋 ≤ ( 𝑌 ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ) ∧ ( 𝑌 ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ) 𝐶 𝑌 ) ) ) |
| 46 |
45
|
rspcev |
⊢ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ∈ 𝐻 ∧ ( 𝑋 ≤ ( 𝑌 ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ) ∧ ( 𝑌 ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ) 𝐶 𝑌 ) ) → ∃ 𝑤 ∈ 𝐻 ( 𝑋 ≤ ( 𝑌 ∧ 𝑤 ) ∧ ( 𝑌 ∧ 𝑤 ) 𝐶 𝑌 ) ) |
| 47 |
16 41 46
|
syl2anc |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) ≤ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) → ∃ 𝑤 ∈ 𝐻 ( 𝑋 ≤ ( 𝑌 ∧ 𝑤 ) ∧ ( 𝑌 ∧ 𝑤 ) 𝐶 𝑌 ) ) |
| 48 |
|
simpl1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → 𝐾 ∈ HL ) |
| 49 |
48 17
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → 𝐾 ∈ OP ) |
| 50 |
|
simpl3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → 𝑌 ∈ 𝐵 ) |
| 51 |
1 12
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∈ 𝐵 ) |
| 52 |
49 50 51
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∈ 𝐵 ) |
| 53 |
|
simpl2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → 𝑋 ∈ 𝐵 ) |
| 54 |
1 12
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐵 ) |
| 55 |
49 53 54
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐵 ) |
| 56 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → 𝑋 < 𝑌 ) |
| 57 |
1 3 12
|
opltcon3b |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 < 𝑌 ↔ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) < ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) |
| 58 |
49 53 50 57
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → ( 𝑋 < 𝑌 ↔ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) < ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) |
| 59 |
56 58
|
mpbid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) < ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) |
| 60 |
1 2 3 29 5 9
|
hlrelat3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∈ 𝐵 ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐵 ) ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) < ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) → ∃ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) ≤ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) |
| 61 |
48 52 55 59 60
|
syl31anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → ∃ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) ≤ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) |
| 62 |
47 61
|
r19.29a |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → ∃ 𝑤 ∈ 𝐻 ( 𝑋 ≤ ( 𝑌 ∧ 𝑤 ) ∧ ( 𝑌 ∧ 𝑤 ) 𝐶 𝑌 ) ) |