| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lhpset.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
lhpset.u |
⊢ 1 = ( 1. ‘ 𝐾 ) |
| 3 |
|
lhpset.c |
⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) |
| 4 |
|
lhpset.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 5 |
|
elex |
⊢ ( 𝐾 ∈ 𝐴 → 𝐾 ∈ V ) |
| 6 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( Base ‘ 𝑘 ) = ( Base ‘ 𝐾 ) ) |
| 7 |
6 1
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( Base ‘ 𝑘 ) = 𝐵 ) |
| 8 |
|
eqidd |
⊢ ( 𝑘 = 𝐾 → 𝑤 = 𝑤 ) |
| 9 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( ⋖ ‘ 𝑘 ) = ( ⋖ ‘ 𝐾 ) ) |
| 10 |
9 3
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( ⋖ ‘ 𝑘 ) = 𝐶 ) |
| 11 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( 1. ‘ 𝑘 ) = ( 1. ‘ 𝐾 ) ) |
| 12 |
11 2
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( 1. ‘ 𝑘 ) = 1 ) |
| 13 |
8 10 12
|
breq123d |
⊢ ( 𝑘 = 𝐾 → ( 𝑤 ( ⋖ ‘ 𝑘 ) ( 1. ‘ 𝑘 ) ↔ 𝑤 𝐶 1 ) ) |
| 14 |
7 13
|
rabeqbidv |
⊢ ( 𝑘 = 𝐾 → { 𝑤 ∈ ( Base ‘ 𝑘 ) ∣ 𝑤 ( ⋖ ‘ 𝑘 ) ( 1. ‘ 𝑘 ) } = { 𝑤 ∈ 𝐵 ∣ 𝑤 𝐶 1 } ) |
| 15 |
|
df-lhyp |
⊢ LHyp = ( 𝑘 ∈ V ↦ { 𝑤 ∈ ( Base ‘ 𝑘 ) ∣ 𝑤 ( ⋖ ‘ 𝑘 ) ( 1. ‘ 𝑘 ) } ) |
| 16 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
| 17 |
16
|
rabex |
⊢ { 𝑤 ∈ 𝐵 ∣ 𝑤 𝐶 1 } ∈ V |
| 18 |
14 15 17
|
fvmpt |
⊢ ( 𝐾 ∈ V → ( LHyp ‘ 𝐾 ) = { 𝑤 ∈ 𝐵 ∣ 𝑤 𝐶 1 } ) |
| 19 |
4 18
|
eqtrid |
⊢ ( 𝐾 ∈ V → 𝐻 = { 𝑤 ∈ 𝐵 ∣ 𝑤 𝐶 1 } ) |
| 20 |
5 19
|
syl |
⊢ ( 𝐾 ∈ 𝐴 → 𝐻 = { 𝑤 ∈ 𝐵 ∣ 𝑤 𝐶 1 } ) |