Step |
Hyp |
Ref |
Expression |
1 |
|
lidl0.u |
⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) |
2 |
|
lidl0.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
3 |
|
rlmlmod |
⊢ ( 𝑅 ∈ Ring → ( ringLMod ‘ 𝑅 ) ∈ LMod ) |
4 |
|
rlm0 |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ ( ringLMod ‘ 𝑅 ) ) |
5 |
2 4
|
eqtri |
⊢ 0 = ( 0g ‘ ( ringLMod ‘ 𝑅 ) ) |
6 |
|
eqid |
⊢ ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) = ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) |
7 |
5 6
|
lsssn0 |
⊢ ( ( ringLMod ‘ 𝑅 ) ∈ LMod → { 0 } ∈ ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) ) |
8 |
3 7
|
syl |
⊢ ( 𝑅 ∈ Ring → { 0 } ∈ ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) ) |
9 |
|
lidlval |
⊢ ( LIdeal ‘ 𝑅 ) = ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) |
10 |
1 9
|
eqtri |
⊢ 𝑈 = ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) |
11 |
8 10
|
eleqtrrdi |
⊢ ( 𝑅 ∈ Ring → { 0 } ∈ 𝑈 ) |