| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rnglidl0.u | ⊢ 𝑈  =  ( LIdeal ‘ 𝑅 ) | 
						
							| 2 |  | rnglidl0.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 3 |  | rlmlmod | ⊢ ( 𝑅  ∈  Ring  →  ( ringLMod ‘ 𝑅 )  ∈  LMod ) | 
						
							| 4 |  | rlm0 | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ ( ringLMod ‘ 𝑅 ) ) | 
						
							| 5 | 2 4 | eqtri | ⊢  0   =  ( 0g ‘ ( ringLMod ‘ 𝑅 ) ) | 
						
							| 6 |  | eqid | ⊢ ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) )  =  ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) | 
						
							| 7 | 5 6 | lsssn0 | ⊢ ( ( ringLMod ‘ 𝑅 )  ∈  LMod  →  {  0  }  ∈  ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) ) | 
						
							| 8 | 3 7 | syl | ⊢ ( 𝑅  ∈  Ring  →  {  0  }  ∈  ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) ) | 
						
							| 9 |  | lidlval | ⊢ ( LIdeal ‘ 𝑅 )  =  ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) | 
						
							| 10 | 1 9 | eqtri | ⊢ 𝑈  =  ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) | 
						
							| 11 | 8 10 | eleqtrrdi | ⊢ ( 𝑅  ∈  Ring  →  {  0  }  ∈  𝑈 ) |