Metamath Proof Explorer


Theorem lidl0ALT

Description: Alternate proof for lidl0 not using rnglidl0 : Every ring contains a zero ideal. (Contributed by Stefan O'Rear, 3-Jan-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses rnglidl0.u 𝑈 = ( LIdeal ‘ 𝑅 )
rnglidl0.z 0 = ( 0g𝑅 )
Assertion lidl0ALT ( 𝑅 ∈ Ring → { 0 } ∈ 𝑈 )

Proof

Step Hyp Ref Expression
1 rnglidl0.u 𝑈 = ( LIdeal ‘ 𝑅 )
2 rnglidl0.z 0 = ( 0g𝑅 )
3 rlmlmod ( 𝑅 ∈ Ring → ( ringLMod ‘ 𝑅 ) ∈ LMod )
4 rlm0 ( 0g𝑅 ) = ( 0g ‘ ( ringLMod ‘ 𝑅 ) )
5 2 4 eqtri 0 = ( 0g ‘ ( ringLMod ‘ 𝑅 ) )
6 eqid ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) = ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) )
7 5 6 lsssn0 ( ( ringLMod ‘ 𝑅 ) ∈ LMod → { 0 } ∈ ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) )
8 3 7 syl ( 𝑅 ∈ Ring → { 0 } ∈ ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) )
9 lidlval ( LIdeal ‘ 𝑅 ) = ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) )
10 1 9 eqtri 𝑈 = ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) )
11 8 10 eleqtrrdi ( 𝑅 ∈ Ring → { 0 } ∈ 𝑈 )