Step |
Hyp |
Ref |
Expression |
1 |
|
lidlcl.u |
⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) |
2 |
|
lidl0cl.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
3 |
|
rlm0 |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ ( ringLMod ‘ 𝑅 ) ) |
4 |
2 3
|
eqtri |
⊢ 0 = ( 0g ‘ ( ringLMod ‘ 𝑅 ) ) |
5 |
|
rlmlmod |
⊢ ( 𝑅 ∈ Ring → ( ringLMod ‘ 𝑅 ) ∈ LMod ) |
6 |
|
simpr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → 𝐼 ∈ 𝑈 ) |
7 |
|
lidlval |
⊢ ( LIdeal ‘ 𝑅 ) = ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) |
8 |
1 7
|
eqtri |
⊢ 𝑈 = ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) |
9 |
6 8
|
eleqtrdi |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → 𝐼 ∈ ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) ) |
10 |
|
eqid |
⊢ ( 0g ‘ ( ringLMod ‘ 𝑅 ) ) = ( 0g ‘ ( ringLMod ‘ 𝑅 ) ) |
11 |
|
eqid |
⊢ ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) = ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) |
12 |
10 11
|
lss0cl |
⊢ ( ( ( ringLMod ‘ 𝑅 ) ∈ LMod ∧ 𝐼 ∈ ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) ) → ( 0g ‘ ( ringLMod ‘ 𝑅 ) ) ∈ 𝐼 ) |
13 |
5 9 12
|
syl2an2r |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → ( 0g ‘ ( ringLMod ‘ 𝑅 ) ) ∈ 𝐼 ) |
14 |
4 13
|
eqeltrid |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → 0 ∈ 𝐼 ) |