Metamath Proof Explorer


Theorem lidl1

Description: Every ring contains a unit ideal. (Contributed by Stefan O'Rear, 3-Jan-2015)

Ref Expression
Hypotheses lidl0.u 𝑈 = ( LIdeal ‘ 𝑅 )
lidl1.b 𝐵 = ( Base ‘ 𝑅 )
Assertion lidl1 ( 𝑅 ∈ Ring → 𝐵𝑈 )

Proof

Step Hyp Ref Expression
1 lidl0.u 𝑈 = ( LIdeal ‘ 𝑅 )
2 lidl1.b 𝐵 = ( Base ‘ 𝑅 )
3 rlmlmod ( 𝑅 ∈ Ring → ( ringLMod ‘ 𝑅 ) ∈ LMod )
4 rlmbas ( Base ‘ 𝑅 ) = ( Base ‘ ( ringLMod ‘ 𝑅 ) )
5 2 4 eqtri 𝐵 = ( Base ‘ ( ringLMod ‘ 𝑅 ) )
6 eqid ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) = ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) )
7 5 6 lss1 ( ( ringLMod ‘ 𝑅 ) ∈ LMod → 𝐵 ∈ ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) )
8 3 7 syl ( 𝑅 ∈ Ring → 𝐵 ∈ ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) )
9 lidlval ( LIdeal ‘ 𝑅 ) = ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) )
10 1 9 eqtri 𝑈 = ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) )
11 8 10 eleqtrrdi ( 𝑅 ∈ Ring → 𝐵𝑈 )