Step |
Hyp |
Ref |
Expression |
1 |
|
lidlcl.u |
⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) |
2 |
|
lidlcl.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
3 |
|
lidl1el.o |
⊢ 1 = ( 1r ‘ 𝑅 ) |
4 |
2 1
|
lidlss |
⊢ ( 𝐼 ∈ 𝑈 → 𝐼 ⊆ 𝐵 ) |
5 |
4
|
ad2antlr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) ∧ 1 ∈ 𝐼 ) → 𝐼 ⊆ 𝐵 ) |
6 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
7 |
2 6 3
|
ringridm |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑎 ∈ 𝐵 ) → ( 𝑎 ( .r ‘ 𝑅 ) 1 ) = 𝑎 ) |
8 |
7
|
ad2ant2rl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) ∧ ( 1 ∈ 𝐼 ∧ 𝑎 ∈ 𝐵 ) ) → ( 𝑎 ( .r ‘ 𝑅 ) 1 ) = 𝑎 ) |
9 |
1 2 6
|
lidlmcl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) ∧ ( 𝑎 ∈ 𝐵 ∧ 1 ∈ 𝐼 ) ) → ( 𝑎 ( .r ‘ 𝑅 ) 1 ) ∈ 𝐼 ) |
10 |
9
|
ancom2s |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) ∧ ( 1 ∈ 𝐼 ∧ 𝑎 ∈ 𝐵 ) ) → ( 𝑎 ( .r ‘ 𝑅 ) 1 ) ∈ 𝐼 ) |
11 |
8 10
|
eqeltrrd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) ∧ ( 1 ∈ 𝐼 ∧ 𝑎 ∈ 𝐵 ) ) → 𝑎 ∈ 𝐼 ) |
12 |
11
|
expr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) ∧ 1 ∈ 𝐼 ) → ( 𝑎 ∈ 𝐵 → 𝑎 ∈ 𝐼 ) ) |
13 |
12
|
ssrdv |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) ∧ 1 ∈ 𝐼 ) → 𝐵 ⊆ 𝐼 ) |
14 |
5 13
|
eqssd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) ∧ 1 ∈ 𝐼 ) → 𝐼 = 𝐵 ) |
15 |
14
|
ex |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → ( 1 ∈ 𝐼 → 𝐼 = 𝐵 ) ) |
16 |
2 3
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → 1 ∈ 𝐵 ) |
17 |
16
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → 1 ∈ 𝐵 ) |
18 |
|
eleq2 |
⊢ ( 𝐼 = 𝐵 → ( 1 ∈ 𝐼 ↔ 1 ∈ 𝐵 ) ) |
19 |
17 18
|
syl5ibrcom |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → ( 𝐼 = 𝐵 → 1 ∈ 𝐼 ) ) |
20 |
15 19
|
impbid |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → ( 1 ∈ 𝐼 ↔ 𝐼 = 𝐵 ) ) |