| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lidlcl.u | ⊢ 𝑈  =  ( LIdeal ‘ 𝑅 ) | 
						
							| 2 |  | lidlcl.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 3 |  | lidl1el.o | ⊢  1   =  ( 1r ‘ 𝑅 ) | 
						
							| 4 | 2 1 | lidlss | ⊢ ( 𝐼  ∈  𝑈  →  𝐼  ⊆  𝐵 ) | 
						
							| 5 | 4 | ad2antlr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝑈 )  ∧   1   ∈  𝐼 )  →  𝐼  ⊆  𝐵 ) | 
						
							| 6 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 7 | 2 6 3 | ringridm | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑎  ∈  𝐵 )  →  ( 𝑎 ( .r ‘ 𝑅 )  1  )  =  𝑎 ) | 
						
							| 8 | 7 | ad2ant2rl | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝑈 )  ∧  (  1   ∈  𝐼  ∧  𝑎  ∈  𝐵 ) )  →  ( 𝑎 ( .r ‘ 𝑅 )  1  )  =  𝑎 ) | 
						
							| 9 | 1 2 6 | lidlmcl | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝑈 )  ∧  ( 𝑎  ∈  𝐵  ∧   1   ∈  𝐼 ) )  →  ( 𝑎 ( .r ‘ 𝑅 )  1  )  ∈  𝐼 ) | 
						
							| 10 | 9 | ancom2s | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝑈 )  ∧  (  1   ∈  𝐼  ∧  𝑎  ∈  𝐵 ) )  →  ( 𝑎 ( .r ‘ 𝑅 )  1  )  ∈  𝐼 ) | 
						
							| 11 | 8 10 | eqeltrrd | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝑈 )  ∧  (  1   ∈  𝐼  ∧  𝑎  ∈  𝐵 ) )  →  𝑎  ∈  𝐼 ) | 
						
							| 12 | 11 | expr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝑈 )  ∧   1   ∈  𝐼 )  →  ( 𝑎  ∈  𝐵  →  𝑎  ∈  𝐼 ) ) | 
						
							| 13 | 12 | ssrdv | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝑈 )  ∧   1   ∈  𝐼 )  →  𝐵  ⊆  𝐼 ) | 
						
							| 14 | 5 13 | eqssd | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝑈 )  ∧   1   ∈  𝐼 )  →  𝐼  =  𝐵 ) | 
						
							| 15 | 14 | ex | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝑈 )  →  (  1   ∈  𝐼  →  𝐼  =  𝐵 ) ) | 
						
							| 16 | 2 3 | ringidcl | ⊢ ( 𝑅  ∈  Ring  →   1   ∈  𝐵 ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝑈 )  →   1   ∈  𝐵 ) | 
						
							| 18 |  | eleq2 | ⊢ ( 𝐼  =  𝐵  →  (  1   ∈  𝐼  ↔   1   ∈  𝐵 ) ) | 
						
							| 19 | 17 18 | syl5ibrcom | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝑈 )  →  ( 𝐼  =  𝐵  →   1   ∈  𝐼 ) ) | 
						
							| 20 | 15 19 | impbid | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝑈 )  →  (  1   ∈  𝐼  ↔  𝐼  =  𝐵 ) ) |