| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lidlcl.u | ⊢ 𝑈  =  ( LIdeal ‘ 𝑅 ) | 
						
							| 2 |  | lidlacl.p | ⊢  +   =  ( +g ‘ 𝑅 ) | 
						
							| 3 |  | rlmplusg | ⊢ ( +g ‘ 𝑅 )  =  ( +g ‘ ( ringLMod ‘ 𝑅 ) ) | 
						
							| 4 | 2 3 | eqtri | ⊢  +   =  ( +g ‘ ( ringLMod ‘ 𝑅 ) ) | 
						
							| 5 | 4 | oveqi | ⊢ ( 𝑋  +  𝑌 )  =  ( 𝑋 ( +g ‘ ( ringLMod ‘ 𝑅 ) ) 𝑌 ) | 
						
							| 6 |  | rlmlmod | ⊢ ( 𝑅  ∈  Ring  →  ( ringLMod ‘ 𝑅 )  ∈  LMod ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝑈 )  →  ( ringLMod ‘ 𝑅 )  ∈  LMod ) | 
						
							| 8 |  | simpr | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝑈 )  →  𝐼  ∈  𝑈 ) | 
						
							| 9 |  | lidlval | ⊢ ( LIdeal ‘ 𝑅 )  =  ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) | 
						
							| 10 | 1 9 | eqtri | ⊢ 𝑈  =  ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) | 
						
							| 11 | 8 10 | eleqtrdi | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝑈 )  →  𝐼  ∈  ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) ) | 
						
							| 12 | 7 11 | jca | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝑈 )  →  ( ( ringLMod ‘ 𝑅 )  ∈  LMod  ∧  𝐼  ∈  ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) ) ) | 
						
							| 13 |  | eqid | ⊢ ( +g ‘ ( ringLMod ‘ 𝑅 ) )  =  ( +g ‘ ( ringLMod ‘ 𝑅 ) ) | 
						
							| 14 |  | eqid | ⊢ ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) )  =  ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) | 
						
							| 15 | 13 14 | lssvacl | ⊢ ( ( ( ( ringLMod ‘ 𝑅 )  ∈  LMod  ∧  𝐼  ∈  ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) )  ∧  ( 𝑋  ∈  𝐼  ∧  𝑌  ∈  𝐼 ) )  →  ( 𝑋 ( +g ‘ ( ringLMod ‘ 𝑅 ) ) 𝑌 )  ∈  𝐼 ) | 
						
							| 16 | 12 15 | sylan | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝑈 )  ∧  ( 𝑋  ∈  𝐼  ∧  𝑌  ∈  𝐼 ) )  →  ( 𝑋 ( +g ‘ ( ringLMod ‘ 𝑅 ) ) 𝑌 )  ∈  𝐼 ) | 
						
							| 17 | 5 16 | eqeltrid | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝑈 )  ∧  ( 𝑋  ∈  𝐼  ∧  𝑌  ∈  𝐼 ) )  →  ( 𝑋  +  𝑌 )  ∈  𝐼 ) |