| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lidlacs.b | ⊢ 𝐵  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | lidlacs.i | ⊢ 𝐼  =  ( LIdeal ‘ 𝑊 ) | 
						
							| 3 |  | lidlval | ⊢ ( LIdeal ‘ 𝑊 )  =  ( LSubSp ‘ ( ringLMod ‘ 𝑊 ) ) | 
						
							| 4 | 2 3 | eqtri | ⊢ 𝐼  =  ( LSubSp ‘ ( ringLMod ‘ 𝑊 ) ) | 
						
							| 5 |  | rlmlmod | ⊢ ( 𝑊  ∈  Ring  →  ( ringLMod ‘ 𝑊 )  ∈  LMod ) | 
						
							| 6 |  | rlmbas | ⊢ ( Base ‘ 𝑊 )  =  ( Base ‘ ( ringLMod ‘ 𝑊 ) ) | 
						
							| 7 | 1 6 | eqtri | ⊢ 𝐵  =  ( Base ‘ ( ringLMod ‘ 𝑊 ) ) | 
						
							| 8 |  | eqid | ⊢ ( LSubSp ‘ ( ringLMod ‘ 𝑊 ) )  =  ( LSubSp ‘ ( ringLMod ‘ 𝑊 ) ) | 
						
							| 9 | 7 8 | lssacs | ⊢ ( ( ringLMod ‘ 𝑊 )  ∈  LMod  →  ( LSubSp ‘ ( ringLMod ‘ 𝑊 ) )  ∈  ( ACS ‘ 𝐵 ) ) | 
						
							| 10 | 5 9 | syl | ⊢ ( 𝑊  ∈  Ring  →  ( LSubSp ‘ ( ringLMod ‘ 𝑊 ) )  ∈  ( ACS ‘ 𝐵 ) ) | 
						
							| 11 | 4 10 | eqeltrid | ⊢ ( 𝑊  ∈  Ring  →  𝐼  ∈  ( ACS ‘ 𝐵 ) ) |