Step |
Hyp |
Ref |
Expression |
1 |
|
lidlacs.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
2 |
|
lidlacs.i |
⊢ 𝐼 = ( LIdeal ‘ 𝑊 ) |
3 |
|
lidlval |
⊢ ( LIdeal ‘ 𝑊 ) = ( LSubSp ‘ ( ringLMod ‘ 𝑊 ) ) |
4 |
2 3
|
eqtri |
⊢ 𝐼 = ( LSubSp ‘ ( ringLMod ‘ 𝑊 ) ) |
5 |
|
rlmlmod |
⊢ ( 𝑊 ∈ Ring → ( ringLMod ‘ 𝑊 ) ∈ LMod ) |
6 |
|
rlmbas |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ ( ringLMod ‘ 𝑊 ) ) |
7 |
1 6
|
eqtri |
⊢ 𝐵 = ( Base ‘ ( ringLMod ‘ 𝑊 ) ) |
8 |
|
eqid |
⊢ ( LSubSp ‘ ( ringLMod ‘ 𝑊 ) ) = ( LSubSp ‘ ( ringLMod ‘ 𝑊 ) ) |
9 |
7 8
|
lssacs |
⊢ ( ( ringLMod ‘ 𝑊 ) ∈ LMod → ( LSubSp ‘ ( ringLMod ‘ 𝑊 ) ) ∈ ( ACS ‘ 𝐵 ) ) |
10 |
5 9
|
syl |
⊢ ( 𝑊 ∈ Ring → ( LSubSp ‘ ( ringLMod ‘ 𝑊 ) ) ∈ ( ACS ‘ 𝐵 ) ) |
11 |
4 10
|
eqeltrid |
⊢ ( 𝑊 ∈ Ring → 𝐼 ∈ ( ACS ‘ 𝐵 ) ) |