Description: A (left) ideal of a ring is the base set of the restriction of the ring to this ideal. (Contributed by AV, 17-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lidlssbas.l | ⊢ 𝐿 = ( LIdeal ‘ 𝑅 ) | |
| lidlssbas.i | ⊢ 𝐼 = ( 𝑅 ↾s 𝑈 ) | ||
| Assertion | lidlbas | ⊢ ( 𝑈 ∈ 𝐿 → ( Base ‘ 𝐼 ) = 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lidlssbas.l | ⊢ 𝐿 = ( LIdeal ‘ 𝑅 ) | |
| 2 | lidlssbas.i | ⊢ 𝐼 = ( 𝑅 ↾s 𝑈 ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 4 | 2 3 | ressbas | ⊢ ( 𝑈 ∈ 𝐿 → ( 𝑈 ∩ ( Base ‘ 𝑅 ) ) = ( Base ‘ 𝐼 ) ) |
| 5 | 3 1 | lidlss | ⊢ ( 𝑈 ∈ 𝐿 → 𝑈 ⊆ ( Base ‘ 𝑅 ) ) |
| 6 | dfss2 | ⊢ ( 𝑈 ⊆ ( Base ‘ 𝑅 ) ↔ ( 𝑈 ∩ ( Base ‘ 𝑅 ) ) = 𝑈 ) | |
| 7 | 5 6 | sylib | ⊢ ( 𝑈 ∈ 𝐿 → ( 𝑈 ∩ ( Base ‘ 𝑅 ) ) = 𝑈 ) |
| 8 | 4 7 | eqtr3d | ⊢ ( 𝑈 ∈ 𝐿 → ( Base ‘ 𝐼 ) = 𝑈 ) |