Step |
Hyp |
Ref |
Expression |
1 |
|
lidldvgen.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
lidldvgen.u |
⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) |
3 |
|
lidldvgen.k |
⊢ 𝐾 = ( RSpan ‘ 𝑅 ) |
4 |
|
lidldvgen.d |
⊢ ∥ = ( ∥r ‘ 𝑅 ) |
5 |
|
simp1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵 ) → 𝑅 ∈ Ring ) |
6 |
|
simp3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵 ) → 𝐺 ∈ 𝐵 ) |
7 |
6
|
snssd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵 ) → { 𝐺 } ⊆ 𝐵 ) |
8 |
3 1
|
rspssid |
⊢ ( ( 𝑅 ∈ Ring ∧ { 𝐺 } ⊆ 𝐵 ) → { 𝐺 } ⊆ ( 𝐾 ‘ { 𝐺 } ) ) |
9 |
5 7 8
|
syl2anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵 ) → { 𝐺 } ⊆ ( 𝐾 ‘ { 𝐺 } ) ) |
10 |
|
snssg |
⊢ ( 𝐺 ∈ 𝐵 → ( 𝐺 ∈ ( 𝐾 ‘ { 𝐺 } ) ↔ { 𝐺 } ⊆ ( 𝐾 ‘ { 𝐺 } ) ) ) |
11 |
10
|
3ad2ant3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐺 ∈ ( 𝐾 ‘ { 𝐺 } ) ↔ { 𝐺 } ⊆ ( 𝐾 ‘ { 𝐺 } ) ) ) |
12 |
9 11
|
mpbird |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵 ) → 𝐺 ∈ ( 𝐾 ‘ { 𝐺 } ) ) |
13 |
1 3 4
|
rspsn |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵 ) → ( 𝐾 ‘ { 𝐺 } ) = { 𝑦 ∣ 𝐺 ∥ 𝑦 } ) |
14 |
13
|
3adant2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐾 ‘ { 𝐺 } ) = { 𝑦 ∣ 𝐺 ∥ 𝑦 } ) |
15 |
14
|
eleq2d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵 ) → ( 𝑥 ∈ ( 𝐾 ‘ { 𝐺 } ) ↔ 𝑥 ∈ { 𝑦 ∣ 𝐺 ∥ 𝑦 } ) ) |
16 |
|
vex |
⊢ 𝑥 ∈ V |
17 |
|
breq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝐺 ∥ 𝑦 ↔ 𝐺 ∥ 𝑥 ) ) |
18 |
16 17
|
elab |
⊢ ( 𝑥 ∈ { 𝑦 ∣ 𝐺 ∥ 𝑦 } ↔ 𝐺 ∥ 𝑥 ) |
19 |
15 18
|
bitrdi |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵 ) → ( 𝑥 ∈ ( 𝐾 ‘ { 𝐺 } ) ↔ 𝐺 ∥ 𝑥 ) ) |
20 |
19
|
biimpd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵 ) → ( 𝑥 ∈ ( 𝐾 ‘ { 𝐺 } ) → 𝐺 ∥ 𝑥 ) ) |
21 |
20
|
ralrimiv |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵 ) → ∀ 𝑥 ∈ ( 𝐾 ‘ { 𝐺 } ) 𝐺 ∥ 𝑥 ) |
22 |
12 21
|
jca |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐺 ∈ ( 𝐾 ‘ { 𝐺 } ) ∧ ∀ 𝑥 ∈ ( 𝐾 ‘ { 𝐺 } ) 𝐺 ∥ 𝑥 ) ) |
23 |
|
eleq2 |
⊢ ( 𝐼 = ( 𝐾 ‘ { 𝐺 } ) → ( 𝐺 ∈ 𝐼 ↔ 𝐺 ∈ ( 𝐾 ‘ { 𝐺 } ) ) ) |
24 |
|
raleq |
⊢ ( 𝐼 = ( 𝐾 ‘ { 𝐺 } ) → ( ∀ 𝑥 ∈ 𝐼 𝐺 ∥ 𝑥 ↔ ∀ 𝑥 ∈ ( 𝐾 ‘ { 𝐺 } ) 𝐺 ∥ 𝑥 ) ) |
25 |
23 24
|
anbi12d |
⊢ ( 𝐼 = ( 𝐾 ‘ { 𝐺 } ) → ( ( 𝐺 ∈ 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 𝐺 ∥ 𝑥 ) ↔ ( 𝐺 ∈ ( 𝐾 ‘ { 𝐺 } ) ∧ ∀ 𝑥 ∈ ( 𝐾 ‘ { 𝐺 } ) 𝐺 ∥ 𝑥 ) ) ) |
26 |
22 25
|
syl5ibrcom |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐼 = ( 𝐾 ‘ { 𝐺 } ) → ( 𝐺 ∈ 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 𝐺 ∥ 𝑥 ) ) ) |
27 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐼 𝐺 ∥ 𝑥 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐼 → 𝐺 ∥ 𝑥 ) ) |
28 |
|
ssab |
⊢ ( 𝐼 ⊆ { 𝑥 ∣ 𝐺 ∥ 𝑥 } ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐼 → 𝐺 ∥ 𝑥 ) ) |
29 |
27 28
|
sylbb2 |
⊢ ( ∀ 𝑥 ∈ 𝐼 𝐺 ∥ 𝑥 → 𝐼 ⊆ { 𝑥 ∣ 𝐺 ∥ 𝑥 } ) |
30 |
29
|
ad2antll |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵 ) ∧ ( 𝐺 ∈ 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 𝐺 ∥ 𝑥 ) ) → 𝐼 ⊆ { 𝑥 ∣ 𝐺 ∥ 𝑥 } ) |
31 |
1 3 4
|
rspsn |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵 ) → ( 𝐾 ‘ { 𝐺 } ) = { 𝑥 ∣ 𝐺 ∥ 𝑥 } ) |
32 |
31
|
3adant2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐾 ‘ { 𝐺 } ) = { 𝑥 ∣ 𝐺 ∥ 𝑥 } ) |
33 |
32
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵 ) ∧ ( 𝐺 ∈ 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 𝐺 ∥ 𝑥 ) ) → ( 𝐾 ‘ { 𝐺 } ) = { 𝑥 ∣ 𝐺 ∥ 𝑥 } ) |
34 |
30 33
|
sseqtrrd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵 ) ∧ ( 𝐺 ∈ 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 𝐺 ∥ 𝑥 ) ) → 𝐼 ⊆ ( 𝐾 ‘ { 𝐺 } ) ) |
35 |
|
simpl1 |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝐺 ∈ 𝐼 ) → 𝑅 ∈ Ring ) |
36 |
|
simpl2 |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝐺 ∈ 𝐼 ) → 𝐼 ∈ 𝑈 ) |
37 |
|
snssi |
⊢ ( 𝐺 ∈ 𝐼 → { 𝐺 } ⊆ 𝐼 ) |
38 |
37
|
adantl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝐺 ∈ 𝐼 ) → { 𝐺 } ⊆ 𝐼 ) |
39 |
3 2
|
rspssp |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ { 𝐺 } ⊆ 𝐼 ) → ( 𝐾 ‘ { 𝐺 } ) ⊆ 𝐼 ) |
40 |
35 36 38 39
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝐺 ∈ 𝐼 ) → ( 𝐾 ‘ { 𝐺 } ) ⊆ 𝐼 ) |
41 |
40
|
adantrr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵 ) ∧ ( 𝐺 ∈ 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 𝐺 ∥ 𝑥 ) ) → ( 𝐾 ‘ { 𝐺 } ) ⊆ 𝐼 ) |
42 |
34 41
|
eqssd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵 ) ∧ ( 𝐺 ∈ 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 𝐺 ∥ 𝑥 ) ) → 𝐼 = ( 𝐾 ‘ { 𝐺 } ) ) |
43 |
42
|
ex |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵 ) → ( ( 𝐺 ∈ 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 𝐺 ∥ 𝑥 ) → 𝐼 = ( 𝐾 ‘ { 𝐺 } ) ) ) |
44 |
26 43
|
impbid |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐼 = ( 𝐾 ‘ { 𝐺 } ) ↔ ( 𝐺 ∈ 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 𝐺 ∥ 𝑥 ) ) ) |