Metamath Proof Explorer


Theorem lidlmcl

Description: An ideal is closed under left-multiplication by elements of the full ring. (Contributed by Stefan O'Rear, 3-Jan-2015) (Proof shortened by AV, 31-Mar-2025)

Ref Expression
Hypotheses lidlcl.u 𝑈 = ( LIdeal ‘ 𝑅 )
lidlcl.b 𝐵 = ( Base ‘ 𝑅 )
lidlmcl.t · = ( .r𝑅 )
Assertion lidlmcl ( ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈 ) ∧ ( 𝑋𝐵𝑌𝐼 ) ) → ( 𝑋 · 𝑌 ) ∈ 𝐼 )

Proof

Step Hyp Ref Expression
1 lidlcl.u 𝑈 = ( LIdeal ‘ 𝑅 )
2 lidlcl.b 𝐵 = ( Base ‘ 𝑅 )
3 lidlmcl.t · = ( .r𝑅 )
4 ringrng ( 𝑅 ∈ Ring → 𝑅 ∈ Rng )
5 4 adantr ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈 ) → 𝑅 ∈ Rng )
6 simpr ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈 ) → 𝐼𝑈 )
7 eqid ( 0g𝑅 ) = ( 0g𝑅 )
8 1 7 lidl0cl ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈 ) → ( 0g𝑅 ) ∈ 𝐼 )
9 5 6 8 3jca ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈 ) → ( 𝑅 ∈ Rng ∧ 𝐼𝑈 ∧ ( 0g𝑅 ) ∈ 𝐼 ) )
10 7 2 3 1 rnglidlmcl ( ( ( 𝑅 ∈ Rng ∧ 𝐼𝑈 ∧ ( 0g𝑅 ) ∈ 𝐼 ) ∧ ( 𝑋𝐵𝑌𝐼 ) ) → ( 𝑋 · 𝑌 ) ∈ 𝐼 )
11 9 10 sylan ( ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈 ) ∧ ( 𝑋𝐵𝑌𝐼 ) ) → ( 𝑋 · 𝑌 ) ∈ 𝐼 )