| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lidlcl.u | ⊢ 𝑈  =  ( LIdeal ‘ 𝑅 ) | 
						
							| 2 |  | lidlcl.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 3 |  | lidlmcl.t | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 4 |  | ringrng | ⊢ ( 𝑅  ∈  Ring  →  𝑅  ∈  Rng ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝑈 )  →  𝑅  ∈  Rng ) | 
						
							| 6 |  | simpr | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝑈 )  →  𝐼  ∈  𝑈 ) | 
						
							| 7 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 8 | 1 7 | lidl0cl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝑈 )  →  ( 0g ‘ 𝑅 )  ∈  𝐼 ) | 
						
							| 9 | 5 6 8 | 3jca | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝑈 )  →  ( 𝑅  ∈  Rng  ∧  𝐼  ∈  𝑈  ∧  ( 0g ‘ 𝑅 )  ∈  𝐼 ) ) | 
						
							| 10 | 7 2 3 1 | rnglidlmcl | ⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝐼  ∈  𝑈  ∧  ( 0g ‘ 𝑅 )  ∈  𝐼 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐼 ) )  →  ( 𝑋  ·  𝑌 )  ∈  𝐼 ) | 
						
							| 11 | 9 10 | sylan | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝑈 )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐼 ) )  →  ( 𝑋  ·  𝑌 )  ∈  𝐼 ) |