| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lidlcl.u |
⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) |
| 2 |
|
lidlnegcl.n |
⊢ 𝑁 = ( invg ‘ 𝑅 ) |
| 3 |
|
rlmvneg |
⊢ ( invg ‘ 𝑅 ) = ( invg ‘ ( ringLMod ‘ 𝑅 ) ) |
| 4 |
2 3
|
eqtri |
⊢ 𝑁 = ( invg ‘ ( ringLMod ‘ 𝑅 ) ) |
| 5 |
4
|
fveq1i |
⊢ ( 𝑁 ‘ 𝑋 ) = ( ( invg ‘ ( ringLMod ‘ 𝑅 ) ) ‘ 𝑋 ) |
| 6 |
|
rlmlmod |
⊢ ( 𝑅 ∈ Ring → ( ringLMod ‘ 𝑅 ) ∈ LMod ) |
| 7 |
6
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼 ) → ( ringLMod ‘ 𝑅 ) ∈ LMod ) |
| 8 |
|
simpr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → 𝐼 ∈ 𝑈 ) |
| 9 |
|
lidlval |
⊢ ( LIdeal ‘ 𝑅 ) = ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) |
| 10 |
1 9
|
eqtri |
⊢ 𝑈 = ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) |
| 11 |
8 10
|
eleqtrdi |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → 𝐼 ∈ ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) ) |
| 12 |
11
|
3adant3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼 ) → 𝐼 ∈ ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) ) |
| 13 |
|
simp3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼 ) → 𝑋 ∈ 𝐼 ) |
| 14 |
|
eqid |
⊢ ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) = ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) |
| 15 |
|
eqid |
⊢ ( invg ‘ ( ringLMod ‘ 𝑅 ) ) = ( invg ‘ ( ringLMod ‘ 𝑅 ) ) |
| 16 |
14 15
|
lssvnegcl |
⊢ ( ( ( ringLMod ‘ 𝑅 ) ∈ LMod ∧ 𝐼 ∈ ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) ∧ 𝑋 ∈ 𝐼 ) → ( ( invg ‘ ( ringLMod ‘ 𝑅 ) ) ‘ 𝑋 ) ∈ 𝐼 ) |
| 17 |
7 12 13 16
|
syl3anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼 ) → ( ( invg ‘ ( ringLMod ‘ 𝑅 ) ) ‘ 𝑋 ) ∈ 𝐼 ) |
| 18 |
5 17
|
eqeltrid |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼 ) → ( 𝑁 ‘ 𝑋 ) ∈ 𝐼 ) |