| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lidlnz.u | ⊢ 𝑈  =  ( LIdeal ‘ 𝑅 ) | 
						
							| 2 |  | lidlnz.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 3 | 1 2 | lidl0cl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝑈 )  →   0   ∈  𝐼 ) | 
						
							| 4 | 3 | snssd | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝑈 )  →  {  0  }  ⊆  𝐼 ) | 
						
							| 5 | 4 | 3adant3 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝑈  ∧  𝐼  ≠  {  0  } )  →  {  0  }  ⊆  𝐼 ) | 
						
							| 6 |  | simp3 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝑈  ∧  𝐼  ≠  {  0  } )  →  𝐼  ≠  {  0  } ) | 
						
							| 7 | 6 | necomd | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝑈  ∧  𝐼  ≠  {  0  } )  →  {  0  }  ≠  𝐼 ) | 
						
							| 8 |  | df-pss | ⊢ ( {  0  }  ⊊  𝐼  ↔  ( {  0  }  ⊆  𝐼  ∧  {  0  }  ≠  𝐼 ) ) | 
						
							| 9 | 5 7 8 | sylanbrc | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝑈  ∧  𝐼  ≠  {  0  } )  →  {  0  }  ⊊  𝐼 ) | 
						
							| 10 |  | pssnel | ⊢ ( {  0  }  ⊊  𝐼  →  ∃ 𝑥 ( 𝑥  ∈  𝐼  ∧  ¬  𝑥  ∈  {  0  } ) ) | 
						
							| 11 | 9 10 | syl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝑈  ∧  𝐼  ≠  {  0  } )  →  ∃ 𝑥 ( 𝑥  ∈  𝐼  ∧  ¬  𝑥  ∈  {  0  } ) ) | 
						
							| 12 |  | velsn | ⊢ ( 𝑥  ∈  {  0  }  ↔  𝑥  =   0  ) | 
						
							| 13 | 12 | necon3bbii | ⊢ ( ¬  𝑥  ∈  {  0  }  ↔  𝑥  ≠   0  ) | 
						
							| 14 | 13 | anbi2i | ⊢ ( ( 𝑥  ∈  𝐼  ∧  ¬  𝑥  ∈  {  0  } )  ↔  ( 𝑥  ∈  𝐼  ∧  𝑥  ≠   0  ) ) | 
						
							| 15 | 14 | exbii | ⊢ ( ∃ 𝑥 ( 𝑥  ∈  𝐼  ∧  ¬  𝑥  ∈  {  0  } )  ↔  ∃ 𝑥 ( 𝑥  ∈  𝐼  ∧  𝑥  ≠   0  ) ) | 
						
							| 16 |  | df-rex | ⊢ ( ∃ 𝑥  ∈  𝐼 𝑥  ≠   0   ↔  ∃ 𝑥 ( 𝑥  ∈  𝐼  ∧  𝑥  ≠   0  ) ) | 
						
							| 17 | 15 16 | bitr4i | ⊢ ( ∃ 𝑥 ( 𝑥  ∈  𝐼  ∧  ¬  𝑥  ∈  {  0  } )  ↔  ∃ 𝑥  ∈  𝐼 𝑥  ≠   0  ) | 
						
							| 18 | 11 17 | sylib | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝑈  ∧  𝐼  ≠  {  0  } )  →  ∃ 𝑥  ∈  𝐼 𝑥  ≠   0  ) |