Metamath Proof Explorer


Theorem lidlnz

Description: A nonzero ideal contains a nonzero element. (Contributed by Stefan O'Rear, 3-Jan-2015)

Ref Expression
Hypotheses lidlnz.u 𝑈 = ( LIdeal ‘ 𝑅 )
lidlnz.z 0 = ( 0g𝑅 )
Assertion lidlnz ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈𝐼 ≠ { 0 } ) → ∃ 𝑥𝐼 𝑥0 )

Proof

Step Hyp Ref Expression
1 lidlnz.u 𝑈 = ( LIdeal ‘ 𝑅 )
2 lidlnz.z 0 = ( 0g𝑅 )
3 1 2 lidl0cl ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈 ) → 0𝐼 )
4 3 snssd ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈 ) → { 0 } ⊆ 𝐼 )
5 4 3adant3 ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈𝐼 ≠ { 0 } ) → { 0 } ⊆ 𝐼 )
6 simp3 ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈𝐼 ≠ { 0 } ) → 𝐼 ≠ { 0 } )
7 6 necomd ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈𝐼 ≠ { 0 } ) → { 0 } ≠ 𝐼 )
8 df-pss ( { 0 } ⊊ 𝐼 ↔ ( { 0 } ⊆ 𝐼 ∧ { 0 } ≠ 𝐼 ) )
9 5 7 8 sylanbrc ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈𝐼 ≠ { 0 } ) → { 0 } ⊊ 𝐼 )
10 pssnel ( { 0 } ⊊ 𝐼 → ∃ 𝑥 ( 𝑥𝐼 ∧ ¬ 𝑥 ∈ { 0 } ) )
11 9 10 syl ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈𝐼 ≠ { 0 } ) → ∃ 𝑥 ( 𝑥𝐼 ∧ ¬ 𝑥 ∈ { 0 } ) )
12 velsn ( 𝑥 ∈ { 0 } ↔ 𝑥 = 0 )
13 12 necon3bbii ( ¬ 𝑥 ∈ { 0 } ↔ 𝑥0 )
14 13 anbi2i ( ( 𝑥𝐼 ∧ ¬ 𝑥 ∈ { 0 } ) ↔ ( 𝑥𝐼𝑥0 ) )
15 14 exbii ( ∃ 𝑥 ( 𝑥𝐼 ∧ ¬ 𝑥 ∈ { 0 } ) ↔ ∃ 𝑥 ( 𝑥𝐼𝑥0 ) )
16 df-rex ( ∃ 𝑥𝐼 𝑥0 ↔ ∃ 𝑥 ( 𝑥𝐼𝑥0 ) )
17 15 16 bitr4i ( ∃ 𝑥 ( 𝑥𝐼 ∧ ¬ 𝑥 ∈ { 0 } ) ↔ ∃ 𝑥𝐼 𝑥0 )
18 11 17 sylib ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈𝐼 ≠ { 0 } ) → ∃ 𝑥𝐼 𝑥0 )