Metamath Proof Explorer


Theorem lidlrsppropd

Description: The left ideals and ring span of a ring depend only on the ring components. Here W is expected to be either B (when closure is available) or _V (when strong equality is available). (Contributed by Mario Carneiro, 14-Jun-2015)

Ref Expression
Hypotheses lidlpropd.1 ( 𝜑𝐵 = ( Base ‘ 𝐾 ) )
lidlpropd.2 ( 𝜑𝐵 = ( Base ‘ 𝐿 ) )
lidlpropd.3 ( 𝜑𝐵𝑊 )
lidlpropd.4 ( ( 𝜑 ∧ ( 𝑥𝑊𝑦𝑊 ) ) → ( 𝑥 ( +g𝐾 ) 𝑦 ) = ( 𝑥 ( +g𝐿 ) 𝑦 ) )
lidlpropd.5 ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝑥 ( .r𝐾 ) 𝑦 ) ∈ 𝑊 )
lidlpropd.6 ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝑥 ( .r𝐾 ) 𝑦 ) = ( 𝑥 ( .r𝐿 ) 𝑦 ) )
Assertion lidlrsppropd ( 𝜑 → ( ( LIdeal ‘ 𝐾 ) = ( LIdeal ‘ 𝐿 ) ∧ ( RSpan ‘ 𝐾 ) = ( RSpan ‘ 𝐿 ) ) )

Proof

Step Hyp Ref Expression
1 lidlpropd.1 ( 𝜑𝐵 = ( Base ‘ 𝐾 ) )
2 lidlpropd.2 ( 𝜑𝐵 = ( Base ‘ 𝐿 ) )
3 lidlpropd.3 ( 𝜑𝐵𝑊 )
4 lidlpropd.4 ( ( 𝜑 ∧ ( 𝑥𝑊𝑦𝑊 ) ) → ( 𝑥 ( +g𝐾 ) 𝑦 ) = ( 𝑥 ( +g𝐿 ) 𝑦 ) )
5 lidlpropd.5 ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝑥 ( .r𝐾 ) 𝑦 ) ∈ 𝑊 )
6 lidlpropd.6 ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝑥 ( .r𝐾 ) 𝑦 ) = ( 𝑥 ( .r𝐿 ) 𝑦 ) )
7 rlmbas ( Base ‘ 𝐾 ) = ( Base ‘ ( ringLMod ‘ 𝐾 ) )
8 1 7 eqtrdi ( 𝜑𝐵 = ( Base ‘ ( ringLMod ‘ 𝐾 ) ) )
9 rlmbas ( Base ‘ 𝐿 ) = ( Base ‘ ( ringLMod ‘ 𝐿 ) )
10 2 9 eqtrdi ( 𝜑𝐵 = ( Base ‘ ( ringLMod ‘ 𝐿 ) ) )
11 rlmplusg ( +g𝐾 ) = ( +g ‘ ( ringLMod ‘ 𝐾 ) )
12 11 oveqi ( 𝑥 ( +g𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ ( ringLMod ‘ 𝐾 ) ) 𝑦 )
13 rlmplusg ( +g𝐿 ) = ( +g ‘ ( ringLMod ‘ 𝐿 ) )
14 13 oveqi ( 𝑥 ( +g𝐿 ) 𝑦 ) = ( 𝑥 ( +g ‘ ( ringLMod ‘ 𝐿 ) ) 𝑦 )
15 4 12 14 3eqtr3g ( ( 𝜑 ∧ ( 𝑥𝑊𝑦𝑊 ) ) → ( 𝑥 ( +g ‘ ( ringLMod ‘ 𝐾 ) ) 𝑦 ) = ( 𝑥 ( +g ‘ ( ringLMod ‘ 𝐿 ) ) 𝑦 ) )
16 rlmvsca ( .r𝐾 ) = ( ·𝑠 ‘ ( ringLMod ‘ 𝐾 ) )
17 16 oveqi ( 𝑥 ( .r𝐾 ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ ( ringLMod ‘ 𝐾 ) ) 𝑦 )
18 17 5 eqeltrrid ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝑥 ( ·𝑠 ‘ ( ringLMod ‘ 𝐾 ) ) 𝑦 ) ∈ 𝑊 )
19 rlmvsca ( .r𝐿 ) = ( ·𝑠 ‘ ( ringLMod ‘ 𝐿 ) )
20 19 oveqi ( 𝑥 ( .r𝐿 ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ ( ringLMod ‘ 𝐿 ) ) 𝑦 )
21 6 17 20 3eqtr3g ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝑥 ( ·𝑠 ‘ ( ringLMod ‘ 𝐾 ) ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ ( ringLMod ‘ 𝐿 ) ) 𝑦 ) )
22 baseid Base = Slot ( Base ‘ ndx )
23 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
24 22 23 strfvi ( Base ‘ 𝐾 ) = ( Base ‘ ( I ‘ 𝐾 ) )
25 rlmsca2 ( I ‘ 𝐾 ) = ( Scalar ‘ ( ringLMod ‘ 𝐾 ) )
26 25 fveq2i ( Base ‘ ( I ‘ 𝐾 ) ) = ( Base ‘ ( Scalar ‘ ( ringLMod ‘ 𝐾 ) ) )
27 24 26 eqtri ( Base ‘ 𝐾 ) = ( Base ‘ ( Scalar ‘ ( ringLMod ‘ 𝐾 ) ) )
28 1 27 eqtrdi ( 𝜑𝐵 = ( Base ‘ ( Scalar ‘ ( ringLMod ‘ 𝐾 ) ) ) )
29 eqid ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 )
30 22 29 strfvi ( Base ‘ 𝐿 ) = ( Base ‘ ( I ‘ 𝐿 ) )
31 rlmsca2 ( I ‘ 𝐿 ) = ( Scalar ‘ ( ringLMod ‘ 𝐿 ) )
32 31 fveq2i ( Base ‘ ( I ‘ 𝐿 ) ) = ( Base ‘ ( Scalar ‘ ( ringLMod ‘ 𝐿 ) ) )
33 30 32 eqtri ( Base ‘ 𝐿 ) = ( Base ‘ ( Scalar ‘ ( ringLMod ‘ 𝐿 ) ) )
34 2 33 eqtrdi ( 𝜑𝐵 = ( Base ‘ ( Scalar ‘ ( ringLMod ‘ 𝐿 ) ) ) )
35 8 10 3 15 18 21 28 34 lsspropd ( 𝜑 → ( LSubSp ‘ ( ringLMod ‘ 𝐾 ) ) = ( LSubSp ‘ ( ringLMod ‘ 𝐿 ) ) )
36 lidlval ( LIdeal ‘ 𝐾 ) = ( LSubSp ‘ ( ringLMod ‘ 𝐾 ) )
37 lidlval ( LIdeal ‘ 𝐿 ) = ( LSubSp ‘ ( ringLMod ‘ 𝐿 ) )
38 35 36 37 3eqtr4g ( 𝜑 → ( LIdeal ‘ 𝐾 ) = ( LIdeal ‘ 𝐿 ) )
39 fvexd ( 𝜑 → ( ringLMod ‘ 𝐾 ) ∈ V )
40 fvexd ( 𝜑 → ( ringLMod ‘ 𝐿 ) ∈ V )
41 8 10 3 15 18 21 28 34 39 40 lsppropd ( 𝜑 → ( LSpan ‘ ( ringLMod ‘ 𝐾 ) ) = ( LSpan ‘ ( ringLMod ‘ 𝐿 ) ) )
42 rspval ( RSpan ‘ 𝐾 ) = ( LSpan ‘ ( ringLMod ‘ 𝐾 ) )
43 rspval ( RSpan ‘ 𝐿 ) = ( LSpan ‘ ( ringLMod ‘ 𝐿 ) )
44 41 42 43 3eqtr4g ( 𝜑 → ( RSpan ‘ 𝐾 ) = ( RSpan ‘ 𝐿 ) )
45 38 44 jca ( 𝜑 → ( ( LIdeal ‘ 𝐾 ) = ( LIdeal ‘ 𝐿 ) ∧ ( RSpan ‘ 𝐾 ) = ( RSpan ‘ 𝐿 ) ) )