Step |
Hyp |
Ref |
Expression |
1 |
|
lidlpropd.1 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) |
2 |
|
lidlpropd.2 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) |
3 |
|
lidlpropd.3 |
⊢ ( 𝜑 → 𝐵 ⊆ 𝑊 ) |
4 |
|
lidlpropd.4 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) |
5 |
|
lidlpropd.5 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) ∈ 𝑊 ) |
6 |
|
lidlpropd.6 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) |
7 |
|
rlmbas |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ ( ringLMod ‘ 𝐾 ) ) |
8 |
1 7
|
eqtrdi |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( ringLMod ‘ 𝐾 ) ) ) |
9 |
|
rlmbas |
⊢ ( Base ‘ 𝐿 ) = ( Base ‘ ( ringLMod ‘ 𝐿 ) ) |
10 |
2 9
|
eqtrdi |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( ringLMod ‘ 𝐿 ) ) ) |
11 |
|
rlmplusg |
⊢ ( +g ‘ 𝐾 ) = ( +g ‘ ( ringLMod ‘ 𝐾 ) ) |
12 |
11
|
oveqi |
⊢ ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ ( ringLMod ‘ 𝐾 ) ) 𝑦 ) |
13 |
|
rlmplusg |
⊢ ( +g ‘ 𝐿 ) = ( +g ‘ ( ringLMod ‘ 𝐿 ) ) |
14 |
13
|
oveqi |
⊢ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = ( 𝑥 ( +g ‘ ( ringLMod ‘ 𝐿 ) ) 𝑦 ) |
15 |
4 12 14
|
3eqtr3g |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ) ) → ( 𝑥 ( +g ‘ ( ringLMod ‘ 𝐾 ) ) 𝑦 ) = ( 𝑥 ( +g ‘ ( ringLMod ‘ 𝐿 ) ) 𝑦 ) ) |
16 |
|
rlmvsca |
⊢ ( .r ‘ 𝐾 ) = ( ·𝑠 ‘ ( ringLMod ‘ 𝐾 ) ) |
17 |
16
|
oveqi |
⊢ ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ ( ringLMod ‘ 𝐾 ) ) 𝑦 ) |
18 |
17 5
|
eqeltrrid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( ·𝑠 ‘ ( ringLMod ‘ 𝐾 ) ) 𝑦 ) ∈ 𝑊 ) |
19 |
|
rlmvsca |
⊢ ( .r ‘ 𝐿 ) = ( ·𝑠 ‘ ( ringLMod ‘ 𝐿 ) ) |
20 |
19
|
oveqi |
⊢ ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ ( ringLMod ‘ 𝐿 ) ) 𝑦 ) |
21 |
6 17 20
|
3eqtr3g |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( ·𝑠 ‘ ( ringLMod ‘ 𝐾 ) ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ ( ringLMod ‘ 𝐿 ) ) 𝑦 ) ) |
22 |
|
baseid |
⊢ Base = Slot ( Base ‘ ndx ) |
23 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
24 |
22 23
|
strfvi |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ ( I ‘ 𝐾 ) ) |
25 |
|
rlmsca2 |
⊢ ( I ‘ 𝐾 ) = ( Scalar ‘ ( ringLMod ‘ 𝐾 ) ) |
26 |
25
|
fveq2i |
⊢ ( Base ‘ ( I ‘ 𝐾 ) ) = ( Base ‘ ( Scalar ‘ ( ringLMod ‘ 𝐾 ) ) ) |
27 |
24 26
|
eqtri |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ ( Scalar ‘ ( ringLMod ‘ 𝐾 ) ) ) |
28 |
1 27
|
eqtrdi |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( Scalar ‘ ( ringLMod ‘ 𝐾 ) ) ) ) |
29 |
|
eqid |
⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) |
30 |
22 29
|
strfvi |
⊢ ( Base ‘ 𝐿 ) = ( Base ‘ ( I ‘ 𝐿 ) ) |
31 |
|
rlmsca2 |
⊢ ( I ‘ 𝐿 ) = ( Scalar ‘ ( ringLMod ‘ 𝐿 ) ) |
32 |
31
|
fveq2i |
⊢ ( Base ‘ ( I ‘ 𝐿 ) ) = ( Base ‘ ( Scalar ‘ ( ringLMod ‘ 𝐿 ) ) ) |
33 |
30 32
|
eqtri |
⊢ ( Base ‘ 𝐿 ) = ( Base ‘ ( Scalar ‘ ( ringLMod ‘ 𝐿 ) ) ) |
34 |
2 33
|
eqtrdi |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( Scalar ‘ ( ringLMod ‘ 𝐿 ) ) ) ) |
35 |
8 10 3 15 18 21 28 34
|
lsspropd |
⊢ ( 𝜑 → ( LSubSp ‘ ( ringLMod ‘ 𝐾 ) ) = ( LSubSp ‘ ( ringLMod ‘ 𝐿 ) ) ) |
36 |
|
lidlval |
⊢ ( LIdeal ‘ 𝐾 ) = ( LSubSp ‘ ( ringLMod ‘ 𝐾 ) ) |
37 |
|
lidlval |
⊢ ( LIdeal ‘ 𝐿 ) = ( LSubSp ‘ ( ringLMod ‘ 𝐿 ) ) |
38 |
35 36 37
|
3eqtr4g |
⊢ ( 𝜑 → ( LIdeal ‘ 𝐾 ) = ( LIdeal ‘ 𝐿 ) ) |
39 |
|
fvexd |
⊢ ( 𝜑 → ( ringLMod ‘ 𝐾 ) ∈ V ) |
40 |
|
fvexd |
⊢ ( 𝜑 → ( ringLMod ‘ 𝐿 ) ∈ V ) |
41 |
8 10 3 15 18 21 28 34 39 40
|
lsppropd |
⊢ ( 𝜑 → ( LSpan ‘ ( ringLMod ‘ 𝐾 ) ) = ( LSpan ‘ ( ringLMod ‘ 𝐿 ) ) ) |
42 |
|
rspval |
⊢ ( RSpan ‘ 𝐾 ) = ( LSpan ‘ ( ringLMod ‘ 𝐾 ) ) |
43 |
|
rspval |
⊢ ( RSpan ‘ 𝐿 ) = ( LSpan ‘ ( ringLMod ‘ 𝐿 ) ) |
44 |
41 42 43
|
3eqtr4g |
⊢ ( 𝜑 → ( RSpan ‘ 𝐾 ) = ( RSpan ‘ 𝐿 ) ) |
45 |
38 44
|
jca |
⊢ ( 𝜑 → ( ( LIdeal ‘ 𝐾 ) = ( LIdeal ‘ 𝐿 ) ∧ ( RSpan ‘ 𝐾 ) = ( RSpan ‘ 𝐿 ) ) ) |