| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lidlpropd.1 | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ 𝐾 ) ) | 
						
							| 2 |  | lidlpropd.2 | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ 𝐿 ) ) | 
						
							| 3 |  | lidlpropd.3 | ⊢ ( 𝜑  →  𝐵  ⊆  𝑊 ) | 
						
							| 4 |  | lidlpropd.4 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑊  ∧  𝑦  ∈  𝑊 ) )  →  ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 )  =  ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | 
						
							| 5 |  | lidlpropd.5 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 )  ∈  𝑊 ) | 
						
							| 6 |  | lidlpropd.6 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 )  =  ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) | 
						
							| 7 |  | rlmbas | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ ( ringLMod ‘ 𝐾 ) ) | 
						
							| 8 | 1 7 | eqtrdi | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ ( ringLMod ‘ 𝐾 ) ) ) | 
						
							| 9 |  | rlmbas | ⊢ ( Base ‘ 𝐿 )  =  ( Base ‘ ( ringLMod ‘ 𝐿 ) ) | 
						
							| 10 | 2 9 | eqtrdi | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ ( ringLMod ‘ 𝐿 ) ) ) | 
						
							| 11 |  | rlmplusg | ⊢ ( +g ‘ 𝐾 )  =  ( +g ‘ ( ringLMod ‘ 𝐾 ) ) | 
						
							| 12 | 11 | oveqi | ⊢ ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 )  =  ( 𝑥 ( +g ‘ ( ringLMod ‘ 𝐾 ) ) 𝑦 ) | 
						
							| 13 |  | rlmplusg | ⊢ ( +g ‘ 𝐿 )  =  ( +g ‘ ( ringLMod ‘ 𝐿 ) ) | 
						
							| 14 | 13 | oveqi | ⊢ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 )  =  ( 𝑥 ( +g ‘ ( ringLMod ‘ 𝐿 ) ) 𝑦 ) | 
						
							| 15 | 4 12 14 | 3eqtr3g | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑊  ∧  𝑦  ∈  𝑊 ) )  →  ( 𝑥 ( +g ‘ ( ringLMod ‘ 𝐾 ) ) 𝑦 )  =  ( 𝑥 ( +g ‘ ( ringLMod ‘ 𝐿 ) ) 𝑦 ) ) | 
						
							| 16 |  | rlmvsca | ⊢ ( .r ‘ 𝐾 )  =  (  ·𝑠  ‘ ( ringLMod ‘ 𝐾 ) ) | 
						
							| 17 | 16 | oveqi | ⊢ ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 )  =  ( 𝑥 (  ·𝑠  ‘ ( ringLMod ‘ 𝐾 ) ) 𝑦 ) | 
						
							| 18 | 17 5 | eqeltrrid | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 (  ·𝑠  ‘ ( ringLMod ‘ 𝐾 ) ) 𝑦 )  ∈  𝑊 ) | 
						
							| 19 |  | rlmvsca | ⊢ ( .r ‘ 𝐿 )  =  (  ·𝑠  ‘ ( ringLMod ‘ 𝐿 ) ) | 
						
							| 20 | 19 | oveqi | ⊢ ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 )  =  ( 𝑥 (  ·𝑠  ‘ ( ringLMod ‘ 𝐿 ) ) 𝑦 ) | 
						
							| 21 | 6 17 20 | 3eqtr3g | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 (  ·𝑠  ‘ ( ringLMod ‘ 𝐾 ) ) 𝑦 )  =  ( 𝑥 (  ·𝑠  ‘ ( ringLMod ‘ 𝐿 ) ) 𝑦 ) ) | 
						
							| 22 |  | baseid | ⊢ Base  =  Slot  ( Base ‘ ndx ) | 
						
							| 23 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 24 | 22 23 | strfvi | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ (  I  ‘ 𝐾 ) ) | 
						
							| 25 |  | rlmsca2 | ⊢ (  I  ‘ 𝐾 )  =  ( Scalar ‘ ( ringLMod ‘ 𝐾 ) ) | 
						
							| 26 | 25 | fveq2i | ⊢ ( Base ‘ (  I  ‘ 𝐾 ) )  =  ( Base ‘ ( Scalar ‘ ( ringLMod ‘ 𝐾 ) ) ) | 
						
							| 27 | 24 26 | eqtri | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ ( Scalar ‘ ( ringLMod ‘ 𝐾 ) ) ) | 
						
							| 28 | 1 27 | eqtrdi | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ ( Scalar ‘ ( ringLMod ‘ 𝐾 ) ) ) ) | 
						
							| 29 |  | eqid | ⊢ ( Base ‘ 𝐿 )  =  ( Base ‘ 𝐿 ) | 
						
							| 30 | 22 29 | strfvi | ⊢ ( Base ‘ 𝐿 )  =  ( Base ‘ (  I  ‘ 𝐿 ) ) | 
						
							| 31 |  | rlmsca2 | ⊢ (  I  ‘ 𝐿 )  =  ( Scalar ‘ ( ringLMod ‘ 𝐿 ) ) | 
						
							| 32 | 31 | fveq2i | ⊢ ( Base ‘ (  I  ‘ 𝐿 ) )  =  ( Base ‘ ( Scalar ‘ ( ringLMod ‘ 𝐿 ) ) ) | 
						
							| 33 | 30 32 | eqtri | ⊢ ( Base ‘ 𝐿 )  =  ( Base ‘ ( Scalar ‘ ( ringLMod ‘ 𝐿 ) ) ) | 
						
							| 34 | 2 33 | eqtrdi | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ ( Scalar ‘ ( ringLMod ‘ 𝐿 ) ) ) ) | 
						
							| 35 | 8 10 3 15 18 21 28 34 | lsspropd | ⊢ ( 𝜑  →  ( LSubSp ‘ ( ringLMod ‘ 𝐾 ) )  =  ( LSubSp ‘ ( ringLMod ‘ 𝐿 ) ) ) | 
						
							| 36 |  | lidlval | ⊢ ( LIdeal ‘ 𝐾 )  =  ( LSubSp ‘ ( ringLMod ‘ 𝐾 ) ) | 
						
							| 37 |  | lidlval | ⊢ ( LIdeal ‘ 𝐿 )  =  ( LSubSp ‘ ( ringLMod ‘ 𝐿 ) ) | 
						
							| 38 | 35 36 37 | 3eqtr4g | ⊢ ( 𝜑  →  ( LIdeal ‘ 𝐾 )  =  ( LIdeal ‘ 𝐿 ) ) | 
						
							| 39 |  | fvexd | ⊢ ( 𝜑  →  ( ringLMod ‘ 𝐾 )  ∈  V ) | 
						
							| 40 |  | fvexd | ⊢ ( 𝜑  →  ( ringLMod ‘ 𝐿 )  ∈  V ) | 
						
							| 41 | 8 10 3 15 18 21 28 34 39 40 | lsppropd | ⊢ ( 𝜑  →  ( LSpan ‘ ( ringLMod ‘ 𝐾 ) )  =  ( LSpan ‘ ( ringLMod ‘ 𝐿 ) ) ) | 
						
							| 42 |  | rspval | ⊢ ( RSpan ‘ 𝐾 )  =  ( LSpan ‘ ( ringLMod ‘ 𝐾 ) ) | 
						
							| 43 |  | rspval | ⊢ ( RSpan ‘ 𝐿 )  =  ( LSpan ‘ ( ringLMod ‘ 𝐿 ) ) | 
						
							| 44 | 41 42 43 | 3eqtr4g | ⊢ ( 𝜑  →  ( RSpan ‘ 𝐾 )  =  ( RSpan ‘ 𝐿 ) ) | 
						
							| 45 | 38 44 | jca | ⊢ ( 𝜑  →  ( ( LIdeal ‘ 𝐾 )  =  ( LIdeal ‘ 𝐿 )  ∧  ( RSpan ‘ 𝐾 )  =  ( RSpan ‘ 𝐿 ) ) ) |