Description: An ideal is a subset of the base set. (Contributed by Stefan O'Rear, 28-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lidlss.b | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | |
| lidlss.i | ⊢ 𝐼 = ( LIdeal ‘ 𝑊 ) | ||
| Assertion | lidlss | ⊢ ( 𝑈 ∈ 𝐼 → 𝑈 ⊆ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lidlss.b | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | |
| 2 | lidlss.i | ⊢ 𝐼 = ( LIdeal ‘ 𝑊 ) | |
| 3 | rlmbas | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ ( ringLMod ‘ 𝑊 ) ) | |
| 4 | 1 3 | eqtri | ⊢ 𝐵 = ( Base ‘ ( ringLMod ‘ 𝑊 ) ) |
| 5 | lidlval | ⊢ ( LIdeal ‘ 𝑊 ) = ( LSubSp ‘ ( ringLMod ‘ 𝑊 ) ) | |
| 6 | 2 5 | eqtri | ⊢ 𝐼 = ( LSubSp ‘ ( ringLMod ‘ 𝑊 ) ) |
| 7 | 4 6 | lssss | ⊢ ( 𝑈 ∈ 𝐼 → 𝑈 ⊆ 𝐵 ) |