Description: An ideal is a subset of the base set. (Contributed by Stefan O'Rear, 28-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lidlss.b | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | |
lidlss.i | ⊢ 𝐼 = ( LIdeal ‘ 𝑊 ) | ||
Assertion | lidlss | ⊢ ( 𝑈 ∈ 𝐼 → 𝑈 ⊆ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lidlss.b | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | |
2 | lidlss.i | ⊢ 𝐼 = ( LIdeal ‘ 𝑊 ) | |
3 | rlmbas | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ ( ringLMod ‘ 𝑊 ) ) | |
4 | 1 3 | eqtri | ⊢ 𝐵 = ( Base ‘ ( ringLMod ‘ 𝑊 ) ) |
5 | lidlval | ⊢ ( LIdeal ‘ 𝑊 ) = ( LSubSp ‘ ( ringLMod ‘ 𝑊 ) ) | |
6 | 2 5 | eqtri | ⊢ 𝐼 = ( LSubSp ‘ ( ringLMod ‘ 𝑊 ) ) |
7 | 4 6 | lssss | ⊢ ( 𝑈 ∈ 𝐼 → 𝑈 ⊆ 𝐵 ) |