Metamath Proof Explorer


Theorem lidlss

Description: An ideal is a subset of the base set. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses lidlss.b 𝐵 = ( Base ‘ 𝑊 )
lidlss.i 𝐼 = ( LIdeal ‘ 𝑊 )
Assertion lidlss ( 𝑈𝐼𝑈𝐵 )

Proof

Step Hyp Ref Expression
1 lidlss.b 𝐵 = ( Base ‘ 𝑊 )
2 lidlss.i 𝐼 = ( LIdeal ‘ 𝑊 )
3 rlmbas ( Base ‘ 𝑊 ) = ( Base ‘ ( ringLMod ‘ 𝑊 ) )
4 1 3 eqtri 𝐵 = ( Base ‘ ( ringLMod ‘ 𝑊 ) )
5 lidlval ( LIdeal ‘ 𝑊 ) = ( LSubSp ‘ ( ringLMod ‘ 𝑊 ) )
6 2 5 eqtri 𝐼 = ( LSubSp ‘ ( ringLMod ‘ 𝑊 ) )
7 4 6 lssss ( 𝑈𝐼𝑈𝐵 )