Step |
Hyp |
Ref |
Expression |
1 |
|
lidlcl.u |
⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) |
2 |
|
lidlsubcl.m |
⊢ − = ( -g ‘ 𝑅 ) |
3 |
1
|
lidlsubg |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) |
4 |
3
|
3adant3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ ( 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼 ) ) → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) |
5 |
|
simp3l |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ ( 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼 ) ) → 𝑋 ∈ 𝐼 ) |
6 |
|
simp3r |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ ( 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼 ) ) → 𝑌 ∈ 𝐼 ) |
7 |
2
|
subgsubcl |
⊢ ( ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼 ) → ( 𝑋 − 𝑌 ) ∈ 𝐼 ) |
8 |
4 5 6 7
|
syl3anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ ( 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼 ) ) → ( 𝑋 − 𝑌 ) ∈ 𝐼 ) |
9 |
8
|
3expa |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) ∧ ( 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼 ) ) → ( 𝑋 − 𝑌 ) ∈ 𝐼 ) |