Step |
Hyp |
Ref |
Expression |
1 |
|
lidlcl.u |
⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) |
2 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
3 |
2 1
|
lidlss |
⊢ ( 𝐼 ∈ 𝑈 → 𝐼 ⊆ ( Base ‘ 𝑅 ) ) |
4 |
3
|
adantl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → 𝐼 ⊆ ( Base ‘ 𝑅 ) ) |
5 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
6 |
1 5
|
lidl0cl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → ( 0g ‘ 𝑅 ) ∈ 𝐼 ) |
7 |
6
|
ne0d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → 𝐼 ≠ ∅ ) |
8 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
9 |
1 8
|
lidlacl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ) ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ) |
10 |
9
|
anassrs |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ) |
11 |
10
|
ralrimiva |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) ∧ 𝑥 ∈ 𝐼 ) → ∀ 𝑦 ∈ 𝐼 ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ) |
12 |
|
eqid |
⊢ ( invg ‘ 𝑅 ) = ( invg ‘ 𝑅 ) |
13 |
1 12
|
lidlnegcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑥 ∈ 𝐼 ) → ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ∈ 𝐼 ) |
14 |
13
|
3expa |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ∈ 𝐼 ) |
15 |
11 14
|
jca |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) ∧ 𝑥 ∈ 𝐼 ) → ( ∀ 𝑦 ∈ 𝐼 ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ∧ ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ∈ 𝐼 ) ) |
16 |
15
|
ralrimiva |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → ∀ 𝑥 ∈ 𝐼 ( ∀ 𝑦 ∈ 𝐼 ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ∧ ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ∈ 𝐼 ) ) |
17 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
18 |
17
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → 𝑅 ∈ Grp ) |
19 |
2 8 12
|
issubg2 |
⊢ ( 𝑅 ∈ Grp → ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ↔ ( 𝐼 ⊆ ( Base ‘ 𝑅 ) ∧ 𝐼 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐼 ( ∀ 𝑦 ∈ 𝐼 ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ∧ ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ∈ 𝐼 ) ) ) ) |
20 |
18 19
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ↔ ( 𝐼 ⊆ ( Base ‘ 𝑅 ) ∧ 𝐼 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐼 ( ∀ 𝑦 ∈ 𝐼 ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ∧ ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ∈ 𝐼 ) ) ) ) |
21 |
4 7 16 20
|
mpbir3and |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) |