Metamath Proof Explorer


Theorem lidlval

Description: Value of the set of ring ideals. (Contributed by Stefan O'Rear, 31-Mar-2015)

Ref Expression
Assertion lidlval ( LIdeal ‘ 𝑊 ) = ( LSubSp ‘ ( ringLMod ‘ 𝑊 ) )

Proof

Step Hyp Ref Expression
1 df-lidl LIdeal = ( LSubSp ∘ ringLMod )
2 1 fveq1i ( LIdeal ‘ 𝑊 ) = ( ( LSubSp ∘ ringLMod ) ‘ 𝑊 )
3 00lss ∅ = ( LSubSp ‘ ∅ )
4 rlmfn ringLMod Fn V
5 fnfun ( ringLMod Fn V → Fun ringLMod )
6 4 5 ax-mp Fun ringLMod
7 3 6 fvco4i ( ( LSubSp ∘ ringLMod ) ‘ 𝑊 ) = ( LSubSp ‘ ( ringLMod ‘ 𝑊 ) )
8 2 7 eqtri ( LIdeal ‘ 𝑊 ) = ( LSubSp ‘ ( ringLMod ‘ 𝑊 ) )