Description: Value of the set of ring ideals. (Contributed by Stefan O'Rear, 31-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | lidlval | ⊢ ( LIdeal ‘ 𝑊 ) = ( LSubSp ‘ ( ringLMod ‘ 𝑊 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lidl | ⊢ LIdeal = ( LSubSp ∘ ringLMod ) | |
2 | 1 | fveq1i | ⊢ ( LIdeal ‘ 𝑊 ) = ( ( LSubSp ∘ ringLMod ) ‘ 𝑊 ) |
3 | 00lss | ⊢ ∅ = ( LSubSp ‘ ∅ ) | |
4 | rlmfn | ⊢ ringLMod Fn V | |
5 | fnfun | ⊢ ( ringLMod Fn V → Fun ringLMod ) | |
6 | 4 5 | ax-mp | ⊢ Fun ringLMod |
7 | 3 6 | fvco4i | ⊢ ( ( LSubSp ∘ ringLMod ) ‘ 𝑊 ) = ( LSubSp ‘ ( ringLMod ‘ 𝑊 ) ) |
8 | 2 7 | eqtri | ⊢ ( LIdeal ‘ 𝑊 ) = ( LSubSp ‘ ( ringLMod ‘ 𝑊 ) ) |