Description: If there is a left and right identity element for any binary operation (group operation) .+ , both identity elements are equal. Generalization of statement in Lang p. 3: it is sufficient that "e" is a left identity element and "e``" is a right identity element instead of both being (two-sided) identity elements. (Contributed by AV, 26-Dec-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lidrideqd.l | ⊢ ( 𝜑 → 𝐿 ∈ 𝐵 ) | |
lidrideqd.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝐵 ) | ||
lidrideqd.li | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ( 𝐿 + 𝑥 ) = 𝑥 ) | ||
lidrideqd.ri | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ( 𝑥 + 𝑅 ) = 𝑥 ) | ||
Assertion | lidrideqd | ⊢ ( 𝜑 → 𝐿 = 𝑅 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lidrideqd.l | ⊢ ( 𝜑 → 𝐿 ∈ 𝐵 ) | |
2 | lidrideqd.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝐵 ) | |
3 | lidrideqd.li | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ( 𝐿 + 𝑥 ) = 𝑥 ) | |
4 | lidrideqd.ri | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ( 𝑥 + 𝑅 ) = 𝑥 ) | |
5 | oveq1 | ⊢ ( 𝑥 = 𝐿 → ( 𝑥 + 𝑅 ) = ( 𝐿 + 𝑅 ) ) | |
6 | id | ⊢ ( 𝑥 = 𝐿 → 𝑥 = 𝐿 ) | |
7 | 5 6 | eqeq12d | ⊢ ( 𝑥 = 𝐿 → ( ( 𝑥 + 𝑅 ) = 𝑥 ↔ ( 𝐿 + 𝑅 ) = 𝐿 ) ) |
8 | 7 4 1 | rspcdva | ⊢ ( 𝜑 → ( 𝐿 + 𝑅 ) = 𝐿 ) |
9 | oveq2 | ⊢ ( 𝑥 = 𝑅 → ( 𝐿 + 𝑥 ) = ( 𝐿 + 𝑅 ) ) | |
10 | id | ⊢ ( 𝑥 = 𝑅 → 𝑥 = 𝑅 ) | |
11 | 9 10 | eqeq12d | ⊢ ( 𝑥 = 𝑅 → ( ( 𝐿 + 𝑥 ) = 𝑥 ↔ ( 𝐿 + 𝑅 ) = 𝑅 ) ) |
12 | 11 3 2 | rspcdva | ⊢ ( 𝜑 → ( 𝐿 + 𝑅 ) = 𝑅 ) |
13 | 8 12 | eqtr3d | ⊢ ( 𝜑 → 𝐿 = 𝑅 ) |