Metamath Proof Explorer


Theorem lidrideqd

Description: If there is a left and right identity element for any binary operation (group operation) .+ , both identity elements are equal. Generalization of statement in Lang p. 3: it is sufficient that "e" is a left identity element and "e``" is a right identity element instead of both being (two-sided) identity elements. (Contributed by AV, 26-Dec-2023)

Ref Expression
Hypotheses lidrideqd.l ( 𝜑𝐿𝐵 )
lidrideqd.r ( 𝜑𝑅𝐵 )
lidrideqd.li ( 𝜑 → ∀ 𝑥𝐵 ( 𝐿 + 𝑥 ) = 𝑥 )
lidrideqd.ri ( 𝜑 → ∀ 𝑥𝐵 ( 𝑥 + 𝑅 ) = 𝑥 )
Assertion lidrideqd ( 𝜑𝐿 = 𝑅 )

Proof

Step Hyp Ref Expression
1 lidrideqd.l ( 𝜑𝐿𝐵 )
2 lidrideqd.r ( 𝜑𝑅𝐵 )
3 lidrideqd.li ( 𝜑 → ∀ 𝑥𝐵 ( 𝐿 + 𝑥 ) = 𝑥 )
4 lidrideqd.ri ( 𝜑 → ∀ 𝑥𝐵 ( 𝑥 + 𝑅 ) = 𝑥 )
5 oveq1 ( 𝑥 = 𝐿 → ( 𝑥 + 𝑅 ) = ( 𝐿 + 𝑅 ) )
6 id ( 𝑥 = 𝐿𝑥 = 𝐿 )
7 5 6 eqeq12d ( 𝑥 = 𝐿 → ( ( 𝑥 + 𝑅 ) = 𝑥 ↔ ( 𝐿 + 𝑅 ) = 𝐿 ) )
8 7 4 1 rspcdva ( 𝜑 → ( 𝐿 + 𝑅 ) = 𝐿 )
9 oveq2 ( 𝑥 = 𝑅 → ( 𝐿 + 𝑥 ) = ( 𝐿 + 𝑅 ) )
10 id ( 𝑥 = 𝑅𝑥 = 𝑅 )
11 9 10 eqeq12d ( 𝑥 = 𝑅 → ( ( 𝐿 + 𝑥 ) = 𝑥 ↔ ( 𝐿 + 𝑅 ) = 𝑅 ) )
12 11 3 2 rspcdva ( 𝜑 → ( 𝐿 + 𝑅 ) = 𝑅 )
13 8 12 eqtr3d ( 𝜑𝐿 = 𝑅 )