Step |
Hyp |
Ref |
Expression |
1 |
|
lidrideqd.l |
⊢ ( 𝜑 → 𝐿 ∈ 𝐵 ) |
2 |
|
lidrideqd.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝐵 ) |
3 |
|
lidrideqd.li |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ( 𝐿 + 𝑥 ) = 𝑥 ) |
4 |
|
lidrideqd.ri |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ( 𝑥 + 𝑅 ) = 𝑥 ) |
5 |
|
lidrideqd.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
6 |
|
lidrideqd.p |
⊢ + = ( +g ‘ 𝐺 ) |
7 |
|
lidrididd.o |
⊢ 0 = ( 0g ‘ 𝐺 ) |
8 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐿 + 𝑥 ) = ( 𝐿 + 𝑦 ) ) |
9 |
|
id |
⊢ ( 𝑥 = 𝑦 → 𝑥 = 𝑦 ) |
10 |
8 9
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐿 + 𝑥 ) = 𝑥 ↔ ( 𝐿 + 𝑦 ) = 𝑦 ) ) |
11 |
10
|
rspcv |
⊢ ( 𝑦 ∈ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 ( 𝐿 + 𝑥 ) = 𝑥 → ( 𝐿 + 𝑦 ) = 𝑦 ) ) |
12 |
3 11
|
mpan9 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝐿 + 𝑦 ) = 𝑦 ) |
13 |
1 2 3 4
|
lidrideqd |
⊢ ( 𝜑 → 𝐿 = 𝑅 ) |
14 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 + 𝑅 ) = ( 𝑦 + 𝑅 ) ) |
15 |
14 9
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 + 𝑅 ) = 𝑥 ↔ ( 𝑦 + 𝑅 ) = 𝑦 ) ) |
16 |
15
|
rspcv |
⊢ ( 𝑦 ∈ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 ( 𝑥 + 𝑅 ) = 𝑥 → ( 𝑦 + 𝑅 ) = 𝑦 ) ) |
17 |
|
oveq2 |
⊢ ( 𝐿 = 𝑅 → ( 𝑦 + 𝐿 ) = ( 𝑦 + 𝑅 ) ) |
18 |
17
|
adantl |
⊢ ( ( ( 𝑦 + 𝑅 ) = 𝑦 ∧ 𝐿 = 𝑅 ) → ( 𝑦 + 𝐿 ) = ( 𝑦 + 𝑅 ) ) |
19 |
|
simpl |
⊢ ( ( ( 𝑦 + 𝑅 ) = 𝑦 ∧ 𝐿 = 𝑅 ) → ( 𝑦 + 𝑅 ) = 𝑦 ) |
20 |
18 19
|
eqtrd |
⊢ ( ( ( 𝑦 + 𝑅 ) = 𝑦 ∧ 𝐿 = 𝑅 ) → ( 𝑦 + 𝐿 ) = 𝑦 ) |
21 |
20
|
ex |
⊢ ( ( 𝑦 + 𝑅 ) = 𝑦 → ( 𝐿 = 𝑅 → ( 𝑦 + 𝐿 ) = 𝑦 ) ) |
22 |
16 21
|
syl6com |
⊢ ( ∀ 𝑥 ∈ 𝐵 ( 𝑥 + 𝑅 ) = 𝑥 → ( 𝑦 ∈ 𝐵 → ( 𝐿 = 𝑅 → ( 𝑦 + 𝐿 ) = 𝑦 ) ) ) |
23 |
22
|
com23 |
⊢ ( ∀ 𝑥 ∈ 𝐵 ( 𝑥 + 𝑅 ) = 𝑥 → ( 𝐿 = 𝑅 → ( 𝑦 ∈ 𝐵 → ( 𝑦 + 𝐿 ) = 𝑦 ) ) ) |
24 |
4 13 23
|
sylc |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 → ( 𝑦 + 𝐿 ) = 𝑦 ) ) |
25 |
24
|
imp |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 + 𝐿 ) = 𝑦 ) |
26 |
5 7 6 1 12 25
|
ismgmid2 |
⊢ ( 𝜑 → 𝐿 = 0 ) |