Metamath Proof Explorer


Theorem lidrididd

Description: If there is a left and right identity element for any binary operation (group operation) .+ , the left identity element (and therefore also the right identity element according to lidrideqd ) is equal to the two-sided identity element. (Contributed by AV, 26-Dec-2023)

Ref Expression
Hypotheses lidrideqd.l ( 𝜑𝐿𝐵 )
lidrideqd.r ( 𝜑𝑅𝐵 )
lidrideqd.li ( 𝜑 → ∀ 𝑥𝐵 ( 𝐿 + 𝑥 ) = 𝑥 )
lidrideqd.ri ( 𝜑 → ∀ 𝑥𝐵 ( 𝑥 + 𝑅 ) = 𝑥 )
lidrideqd.b 𝐵 = ( Base ‘ 𝐺 )
lidrideqd.p + = ( +g𝐺 )
lidrididd.o 0 = ( 0g𝐺 )
Assertion lidrididd ( 𝜑𝐿 = 0 )

Proof

Step Hyp Ref Expression
1 lidrideqd.l ( 𝜑𝐿𝐵 )
2 lidrideqd.r ( 𝜑𝑅𝐵 )
3 lidrideqd.li ( 𝜑 → ∀ 𝑥𝐵 ( 𝐿 + 𝑥 ) = 𝑥 )
4 lidrideqd.ri ( 𝜑 → ∀ 𝑥𝐵 ( 𝑥 + 𝑅 ) = 𝑥 )
5 lidrideqd.b 𝐵 = ( Base ‘ 𝐺 )
6 lidrideqd.p + = ( +g𝐺 )
7 lidrididd.o 0 = ( 0g𝐺 )
8 oveq2 ( 𝑥 = 𝑦 → ( 𝐿 + 𝑥 ) = ( 𝐿 + 𝑦 ) )
9 id ( 𝑥 = 𝑦𝑥 = 𝑦 )
10 8 9 eqeq12d ( 𝑥 = 𝑦 → ( ( 𝐿 + 𝑥 ) = 𝑥 ↔ ( 𝐿 + 𝑦 ) = 𝑦 ) )
11 10 rspcv ( 𝑦𝐵 → ( ∀ 𝑥𝐵 ( 𝐿 + 𝑥 ) = 𝑥 → ( 𝐿 + 𝑦 ) = 𝑦 ) )
12 3 11 mpan9 ( ( 𝜑𝑦𝐵 ) → ( 𝐿 + 𝑦 ) = 𝑦 )
13 1 2 3 4 lidrideqd ( 𝜑𝐿 = 𝑅 )
14 oveq1 ( 𝑥 = 𝑦 → ( 𝑥 + 𝑅 ) = ( 𝑦 + 𝑅 ) )
15 14 9 eqeq12d ( 𝑥 = 𝑦 → ( ( 𝑥 + 𝑅 ) = 𝑥 ↔ ( 𝑦 + 𝑅 ) = 𝑦 ) )
16 15 rspcv ( 𝑦𝐵 → ( ∀ 𝑥𝐵 ( 𝑥 + 𝑅 ) = 𝑥 → ( 𝑦 + 𝑅 ) = 𝑦 ) )
17 oveq2 ( 𝐿 = 𝑅 → ( 𝑦 + 𝐿 ) = ( 𝑦 + 𝑅 ) )
18 17 adantl ( ( ( 𝑦 + 𝑅 ) = 𝑦𝐿 = 𝑅 ) → ( 𝑦 + 𝐿 ) = ( 𝑦 + 𝑅 ) )
19 simpl ( ( ( 𝑦 + 𝑅 ) = 𝑦𝐿 = 𝑅 ) → ( 𝑦 + 𝑅 ) = 𝑦 )
20 18 19 eqtrd ( ( ( 𝑦 + 𝑅 ) = 𝑦𝐿 = 𝑅 ) → ( 𝑦 + 𝐿 ) = 𝑦 )
21 20 ex ( ( 𝑦 + 𝑅 ) = 𝑦 → ( 𝐿 = 𝑅 → ( 𝑦 + 𝐿 ) = 𝑦 ) )
22 16 21 syl6com ( ∀ 𝑥𝐵 ( 𝑥 + 𝑅 ) = 𝑥 → ( 𝑦𝐵 → ( 𝐿 = 𝑅 → ( 𝑦 + 𝐿 ) = 𝑦 ) ) )
23 22 com23 ( ∀ 𝑥𝐵 ( 𝑥 + 𝑅 ) = 𝑥 → ( 𝐿 = 𝑅 → ( 𝑦𝐵 → ( 𝑦 + 𝐿 ) = 𝑦 ) ) )
24 4 13 23 sylc ( 𝜑 → ( 𝑦𝐵 → ( 𝑦 + 𝐿 ) = 𝑦 ) )
25 24 imp ( ( 𝜑𝑦𝐵 ) → ( 𝑦 + 𝐿 ) = 𝑦 )
26 5 7 6 1 12 25 ismgmid2 ( 𝜑𝐿 = 0 )