Step |
Hyp |
Ref |
Expression |
1 |
|
limcrcl |
⊢ ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) → ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ) |
2 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( dom 𝐹 ∪ { 𝐵 } ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( dom 𝐹 ∪ { 𝐵 } ) ) |
3 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
4 |
2 3
|
limcfval |
⊢ ( ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐹 limℂ 𝐵 ) = { 𝑦 ∣ ( 𝑧 ∈ ( dom 𝐹 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑦 , ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( dom 𝐹 ∪ { 𝐵 } ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐵 ) } ∧ ( 𝐹 limℂ 𝐵 ) ⊆ ℂ ) ) |
5 |
1 4
|
syl |
⊢ ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) → ( ( 𝐹 limℂ 𝐵 ) = { 𝑦 ∣ ( 𝑧 ∈ ( dom 𝐹 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑦 , ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( dom 𝐹 ∪ { 𝐵 } ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐵 ) } ∧ ( 𝐹 limℂ 𝐵 ) ⊆ ℂ ) ) |
6 |
5
|
simprd |
⊢ ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) → ( 𝐹 limℂ 𝐵 ) ⊆ ℂ ) |
7 |
|
id |
⊢ ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) → 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ) |
8 |
6 7
|
sseldd |
⊢ ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) → 𝑥 ∈ ℂ ) |
9 |
8
|
ssriv |
⊢ ( 𝐹 limℂ 𝐵 ) ⊆ ℂ |