| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limccnp.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐷 ) |
| 2 |
|
limccnp.d |
⊢ ( 𝜑 → 𝐷 ⊆ ℂ ) |
| 3 |
|
limccnp.k |
⊢ 𝐾 = ( TopOpen ‘ ℂfld ) |
| 4 |
|
limccnp.j |
⊢ 𝐽 = ( 𝐾 ↾t 𝐷 ) |
| 5 |
|
limccnp.c |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐹 limℂ 𝐵 ) ) |
| 6 |
|
limccnp.b |
⊢ ( 𝜑 → 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐶 ) ) |
| 7 |
3
|
cnfldtopon |
⊢ 𝐾 ∈ ( TopOn ‘ ℂ ) |
| 8 |
|
resttopon |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ 𝐷 ⊆ ℂ ) → ( 𝐾 ↾t 𝐷 ) ∈ ( TopOn ‘ 𝐷 ) ) |
| 9 |
7 2 8
|
sylancr |
⊢ ( 𝜑 → ( 𝐾 ↾t 𝐷 ) ∈ ( TopOn ‘ 𝐷 ) ) |
| 10 |
4 9
|
eqeltrid |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝐷 ) ) |
| 11 |
7
|
a1i |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ ℂ ) ) |
| 12 |
|
cnpf2 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝐷 ) ∧ 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐶 ) ) → 𝐺 : 𝐷 ⟶ ℂ ) |
| 13 |
10 11 6 12
|
syl3anc |
⊢ ( 𝜑 → 𝐺 : 𝐷 ⟶ ℂ ) |
| 14 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 15 |
14
|
cnprcl |
⊢ ( 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐶 ) → 𝐶 ∈ ∪ 𝐽 ) |
| 16 |
6 15
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ ∪ 𝐽 ) |
| 17 |
|
toponuni |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝐷 ) → 𝐷 = ∪ 𝐽 ) |
| 18 |
10 17
|
syl |
⊢ ( 𝜑 → 𝐷 = ∪ 𝐽 ) |
| 19 |
16 18
|
eleqtrrd |
⊢ ( 𝜑 → 𝐶 ∈ 𝐷 ) |
| 20 |
19
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ) ∧ 𝑥 = 𝐵 ) → 𝐶 ∈ 𝐷 ) |
| 21 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝐹 : 𝐴 ⟶ 𝐷 ) |
| 22 |
|
elun |
⊢ ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↔ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ { 𝐵 } ) ) |
| 23 |
|
elsni |
⊢ ( 𝑥 ∈ { 𝐵 } → 𝑥 = 𝐵 ) |
| 24 |
23
|
orim2i |
⊢ ( ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ { 𝐵 } ) → ( 𝑥 ∈ 𝐴 ∨ 𝑥 = 𝐵 ) ) |
| 25 |
22 24
|
sylbi |
⊢ ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) → ( 𝑥 ∈ 𝐴 ∨ 𝑥 = 𝐵 ) ) |
| 26 |
25
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ) → ( 𝑥 ∈ 𝐴 ∨ 𝑥 = 𝐵 ) ) |
| 27 |
26
|
orcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ) → ( 𝑥 = 𝐵 ∨ 𝑥 ∈ 𝐴 ) ) |
| 28 |
27
|
orcanai |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝑥 ∈ 𝐴 ) |
| 29 |
21 28
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ) ∧ ¬ 𝑥 = 𝐵 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐷 ) |
| 30 |
20 29
|
ifclda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ) → if ( 𝑥 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑥 ) ) ∈ 𝐷 ) |
| 31 |
13 30
|
cofmpt |
⊢ ( 𝜑 → ( 𝐺 ∘ ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ ( 𝐺 ‘ if ( 𝑥 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 32 |
|
fvco3 |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐷 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 33 |
21 28 32
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ) ∧ ¬ 𝑥 = 𝐵 ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 34 |
33
|
ifeq2da |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ) → if ( 𝑥 = 𝐵 , ( 𝐺 ‘ 𝐶 ) , ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ) = if ( 𝑥 = 𝐵 , ( 𝐺 ‘ 𝐶 ) , ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 35 |
|
fvif |
⊢ ( 𝐺 ‘ if ( 𝑥 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑥 ) ) ) = if ( 𝑥 = 𝐵 , ( 𝐺 ‘ 𝐶 ) , ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 36 |
34 35
|
eqtr4di |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ) → if ( 𝑥 = 𝐵 , ( 𝐺 ‘ 𝐶 ) , ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ) = ( 𝐺 ‘ if ( 𝑥 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 37 |
36
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , ( 𝐺 ‘ 𝐶 ) , ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ ( 𝐺 ‘ if ( 𝑥 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 38 |
31 37
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐺 ∘ ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , ( 𝐺 ‘ 𝐶 ) , ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ) ) ) |
| 39 |
|
eqid |
⊢ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) = ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) |
| 40 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑥 ) ) ) |
| 41 |
1 2
|
fssd |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) |
| 42 |
1
|
fdmd |
⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) |
| 43 |
|
limcrcl |
⊢ ( 𝐶 ∈ ( 𝐹 limℂ 𝐵 ) → ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ) |
| 44 |
5 43
|
syl |
⊢ ( 𝜑 → ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ) |
| 45 |
44
|
simp2d |
⊢ ( 𝜑 → dom 𝐹 ⊆ ℂ ) |
| 46 |
42 45
|
eqsstrrd |
⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) |
| 47 |
44
|
simp3d |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 48 |
39 3 40 41 46 47
|
ellimc |
⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐹 limℂ 𝐵 ) ↔ ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑥 ) ) ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ) ) |
| 49 |
5 48
|
mpbid |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑥 ) ) ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ) |
| 50 |
3
|
cnfldtop |
⊢ 𝐾 ∈ Top |
| 51 |
50
|
a1i |
⊢ ( 𝜑 → 𝐾 ∈ Top ) |
| 52 |
30
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑥 ) ) ) : ( 𝐴 ∪ { 𝐵 } ) ⟶ 𝐷 ) |
| 53 |
47
|
snssd |
⊢ ( 𝜑 → { 𝐵 } ⊆ ℂ ) |
| 54 |
46 53
|
unssd |
⊢ ( 𝜑 → ( 𝐴 ∪ { 𝐵 } ) ⊆ ℂ ) |
| 55 |
|
resttopon |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ ( 𝐴 ∪ { 𝐵 } ) ⊆ ℂ ) → ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ∈ ( TopOn ‘ ( 𝐴 ∪ { 𝐵 } ) ) ) |
| 56 |
7 54 55
|
sylancr |
⊢ ( 𝜑 → ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ∈ ( TopOn ‘ ( 𝐴 ∪ { 𝐵 } ) ) ) |
| 57 |
|
toponuni |
⊢ ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ∈ ( TopOn ‘ ( 𝐴 ∪ { 𝐵 } ) ) → ( 𝐴 ∪ { 𝐵 } ) = ∪ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ) |
| 58 |
56 57
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∪ { 𝐵 } ) = ∪ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ) |
| 59 |
58
|
feq2d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑥 ) ) ) : ( 𝐴 ∪ { 𝐵 } ) ⟶ 𝐷 ↔ ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑥 ) ) ) : ∪ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ⟶ 𝐷 ) ) |
| 60 |
52 59
|
mpbid |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑥 ) ) ) : ∪ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ⟶ 𝐷 ) |
| 61 |
|
eqid |
⊢ ∪ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) = ∪ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) |
| 62 |
7
|
toponunii |
⊢ ℂ = ∪ 𝐾 |
| 63 |
61 62
|
cnprest2 |
⊢ ( ( 𝐾 ∈ Top ∧ ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑥 ) ) ) : ∪ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ⟶ 𝐷 ∧ 𝐷 ⊆ ℂ ) → ( ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑥 ) ) ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ↔ ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑥 ) ) ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP ( 𝐾 ↾t 𝐷 ) ) ‘ 𝐵 ) ) ) |
| 64 |
51 60 2 63
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑥 ) ) ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ↔ ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑥 ) ) ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP ( 𝐾 ↾t 𝐷 ) ) ‘ 𝐵 ) ) ) |
| 65 |
49 64
|
mpbid |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑥 ) ) ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP ( 𝐾 ↾t 𝐷 ) ) ‘ 𝐵 ) ) |
| 66 |
4
|
oveq2i |
⊢ ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐽 ) = ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP ( 𝐾 ↾t 𝐷 ) ) |
| 67 |
66
|
fveq1i |
⊢ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐽 ) ‘ 𝐵 ) = ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP ( 𝐾 ↾t 𝐷 ) ) ‘ 𝐵 ) |
| 68 |
65 67
|
eleqtrrdi |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑥 ) ) ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐽 ) ‘ 𝐵 ) ) |
| 69 |
|
iftrue |
⊢ ( 𝑥 = 𝐵 → if ( 𝑥 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑥 ) ) = 𝐶 ) |
| 70 |
|
ssun2 |
⊢ { 𝐵 } ⊆ ( 𝐴 ∪ { 𝐵 } ) |
| 71 |
|
snssg |
⊢ ( 𝐵 ∈ ℂ → ( 𝐵 ∈ ( 𝐴 ∪ { 𝐵 } ) ↔ { 𝐵 } ⊆ ( 𝐴 ∪ { 𝐵 } ) ) ) |
| 72 |
47 71
|
syl |
⊢ ( 𝜑 → ( 𝐵 ∈ ( 𝐴 ∪ { 𝐵 } ) ↔ { 𝐵 } ⊆ ( 𝐴 ∪ { 𝐵 } ) ) ) |
| 73 |
70 72
|
mpbiri |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 ∪ { 𝐵 } ) ) |
| 74 |
40 69 73 5
|
fvmptd3 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝐵 ) = 𝐶 ) |
| 75 |
74
|
fveq2d |
⊢ ( 𝜑 → ( ( 𝐽 CnP 𝐾 ) ‘ ( ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝐵 ) ) = ( ( 𝐽 CnP 𝐾 ) ‘ 𝐶 ) ) |
| 76 |
6 75
|
eleqtrrd |
⊢ ( 𝜑 → 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ ( ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝐵 ) ) ) |
| 77 |
|
cnpco |
⊢ ( ( ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑥 ) ) ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐽 ) ‘ 𝐵 ) ∧ 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ ( ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝐵 ) ) ) → ( 𝐺 ∘ ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑥 ) ) ) ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ) |
| 78 |
68 76 77
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 ∘ ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑥 ) ) ) ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ) |
| 79 |
38 78
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , ( 𝐺 ‘ 𝐶 ) , ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ) ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ) |
| 80 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , ( 𝐺 ‘ 𝐶 ) , ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , ( 𝐺 ‘ 𝐶 ) , ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ) ) |
| 81 |
|
fco |
⊢ ( ( 𝐺 : 𝐷 ⟶ ℂ ∧ 𝐹 : 𝐴 ⟶ 𝐷 ) → ( 𝐺 ∘ 𝐹 ) : 𝐴 ⟶ ℂ ) |
| 82 |
13 1 81
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) : 𝐴 ⟶ ℂ ) |
| 83 |
39 3 80 82 46 47
|
ellimc |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝐶 ) ∈ ( ( 𝐺 ∘ 𝐹 ) limℂ 𝐵 ) ↔ ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , ( 𝐺 ‘ 𝐶 ) , ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ) ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ) ) |
| 84 |
79 83
|
mpbird |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝐶 ) ∈ ( ( 𝐺 ∘ 𝐹 ) limℂ 𝐵 ) ) |