Step |
Hyp |
Ref |
Expression |
1 |
|
limccnp2.r |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑅 ∈ 𝑋 ) |
2 |
|
limccnp2.s |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑆 ∈ 𝑌 ) |
3 |
|
limccnp2.x |
⊢ ( 𝜑 → 𝑋 ⊆ ℂ ) |
4 |
|
limccnp2.y |
⊢ ( 𝜑 → 𝑌 ⊆ ℂ ) |
5 |
|
limccnp2.k |
⊢ 𝐾 = ( TopOpen ‘ ℂfld ) |
6 |
|
limccnp2.j |
⊢ 𝐽 = ( ( 𝐾 ×t 𝐾 ) ↾t ( 𝑋 × 𝑌 ) ) |
7 |
|
limccnp2.c |
⊢ ( 𝜑 → 𝐶 ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) limℂ 𝐵 ) ) |
8 |
|
limccnp2.d |
⊢ ( 𝜑 → 𝐷 ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝑆 ) limℂ 𝐵 ) ) |
9 |
|
limccnp2.h |
⊢ ( 𝜑 → 𝐻 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 〈 𝐶 , 𝐷 〉 ) ) |
10 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
11 |
10
|
cnprcl |
⊢ ( 𝐻 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 〈 𝐶 , 𝐷 〉 ) → 〈 𝐶 , 𝐷 〉 ∈ ∪ 𝐽 ) |
12 |
9 11
|
syl |
⊢ ( 𝜑 → 〈 𝐶 , 𝐷 〉 ∈ ∪ 𝐽 ) |
13 |
5
|
cnfldtopon |
⊢ 𝐾 ∈ ( TopOn ‘ ℂ ) |
14 |
|
txtopon |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ 𝐾 ∈ ( TopOn ‘ ℂ ) ) → ( 𝐾 ×t 𝐾 ) ∈ ( TopOn ‘ ( ℂ × ℂ ) ) ) |
15 |
13 13 14
|
mp2an |
⊢ ( 𝐾 ×t 𝐾 ) ∈ ( TopOn ‘ ( ℂ × ℂ ) ) |
16 |
|
xpss12 |
⊢ ( ( 𝑋 ⊆ ℂ ∧ 𝑌 ⊆ ℂ ) → ( 𝑋 × 𝑌 ) ⊆ ( ℂ × ℂ ) ) |
17 |
3 4 16
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 × 𝑌 ) ⊆ ( ℂ × ℂ ) ) |
18 |
|
resttopon |
⊢ ( ( ( 𝐾 ×t 𝐾 ) ∈ ( TopOn ‘ ( ℂ × ℂ ) ) ∧ ( 𝑋 × 𝑌 ) ⊆ ( ℂ × ℂ ) ) → ( ( 𝐾 ×t 𝐾 ) ↾t ( 𝑋 × 𝑌 ) ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) |
19 |
15 17 18
|
sylancr |
⊢ ( 𝜑 → ( ( 𝐾 ×t 𝐾 ) ↾t ( 𝑋 × 𝑌 ) ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) |
20 |
6 19
|
eqeltrid |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) |
21 |
|
toponuni |
⊢ ( 𝐽 ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) → ( 𝑋 × 𝑌 ) = ∪ 𝐽 ) |
22 |
20 21
|
syl |
⊢ ( 𝜑 → ( 𝑋 × 𝑌 ) = ∪ 𝐽 ) |
23 |
12 22
|
eleqtrrd |
⊢ ( 𝜑 → 〈 𝐶 , 𝐷 〉 ∈ ( 𝑋 × 𝑌 ) ) |
24 |
|
opelxp |
⊢ ( 〈 𝐶 , 𝐷 〉 ∈ ( 𝑋 × 𝑌 ) ↔ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) ) |
25 |
23 24
|
sylib |
⊢ ( 𝜑 → ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) ) |
26 |
25
|
simpld |
⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) |
27 |
26
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ) ∧ 𝑥 = 𝐵 ) → 𝐶 ∈ 𝑋 ) |
28 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝜑 ) |
29 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ) → 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ) |
30 |
|
elun |
⊢ ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↔ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ { 𝐵 } ) ) |
31 |
29 30
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ) → ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ { 𝐵 } ) ) |
32 |
31
|
ord |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ) → ( ¬ 𝑥 ∈ 𝐴 → 𝑥 ∈ { 𝐵 } ) ) |
33 |
|
elsni |
⊢ ( 𝑥 ∈ { 𝐵 } → 𝑥 = 𝐵 ) |
34 |
32 33
|
syl6 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ) → ( ¬ 𝑥 ∈ 𝐴 → 𝑥 = 𝐵 ) ) |
35 |
34
|
con1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ) → ( ¬ 𝑥 = 𝐵 → 𝑥 ∈ 𝐴 ) ) |
36 |
35
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝑥 ∈ 𝐴 ) |
37 |
28 36 1
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝑅 ∈ 𝑋 ) |
38 |
27 37
|
ifclda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ) → if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) ∈ 𝑋 ) |
39 |
25
|
simprd |
⊢ ( 𝜑 → 𝐷 ∈ 𝑌 ) |
40 |
39
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ) ∧ 𝑥 = 𝐵 ) → 𝐷 ∈ 𝑌 ) |
41 |
28 36 2
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝑆 ∈ 𝑌 ) |
42 |
40 41
|
ifclda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ) → if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) ∈ 𝑌 ) |
43 |
38 42
|
opelxpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ) → 〈 if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) , if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) 〉 ∈ ( 𝑋 × 𝑌 ) ) |
44 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ 〈 if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) , if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) 〉 ) = ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ 〈 if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) , if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) 〉 ) ) |
45 |
13
|
a1i |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ ℂ ) ) |
46 |
|
cnpf2 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ∧ 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ 𝐻 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 〈 𝐶 , 𝐷 〉 ) ) → 𝐻 : ( 𝑋 × 𝑌 ) ⟶ ℂ ) |
47 |
20 45 9 46
|
syl3anc |
⊢ ( 𝜑 → 𝐻 : ( 𝑋 × 𝑌 ) ⟶ ℂ ) |
48 |
47
|
feqmptd |
⊢ ( 𝜑 → 𝐻 = ( 𝑦 ∈ ( 𝑋 × 𝑌 ) ↦ ( 𝐻 ‘ 𝑦 ) ) ) |
49 |
|
fveq2 |
⊢ ( 𝑦 = 〈 if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) , if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) 〉 → ( 𝐻 ‘ 𝑦 ) = ( 𝐻 ‘ 〈 if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) , if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) 〉 ) ) |
50 |
|
df-ov |
⊢ ( if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) 𝐻 if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) ) = ( 𝐻 ‘ 〈 if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) , if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) 〉 ) |
51 |
|
ovif12 |
⊢ ( if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) 𝐻 if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) ) = if ( 𝑥 = 𝐵 , ( 𝐶 𝐻 𝐷 ) , ( 𝑅 𝐻 𝑆 ) ) |
52 |
50 51
|
eqtr3i |
⊢ ( 𝐻 ‘ 〈 if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) , if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) 〉 ) = if ( 𝑥 = 𝐵 , ( 𝐶 𝐻 𝐷 ) , ( 𝑅 𝐻 𝑆 ) ) |
53 |
49 52
|
eqtrdi |
⊢ ( 𝑦 = 〈 if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) , if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) 〉 → ( 𝐻 ‘ 𝑦 ) = if ( 𝑥 = 𝐵 , ( 𝐶 𝐻 𝐷 ) , ( 𝑅 𝐻 𝑆 ) ) ) |
54 |
43 44 48 53
|
fmptco |
⊢ ( 𝜑 → ( 𝐻 ∘ ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ 〈 if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) , if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) 〉 ) ) = ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , ( 𝐶 𝐻 𝐷 ) , ( 𝑅 𝐻 𝑆 ) ) ) ) |
55 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) = ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) |
56 |
55 1
|
dmmptd |
⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) = 𝐴 ) |
57 |
|
limcrcl |
⊢ ( 𝐶 ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) limℂ 𝐵 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) : dom ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ⟶ ℂ ∧ dom ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ) |
58 |
7 57
|
syl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) : dom ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ⟶ ℂ ∧ dom ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ) |
59 |
58
|
simp2d |
⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ⊆ ℂ ) |
60 |
56 59
|
eqsstrrd |
⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) |
61 |
58
|
simp3d |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
62 |
61
|
snssd |
⊢ ( 𝜑 → { 𝐵 } ⊆ ℂ ) |
63 |
60 62
|
unssd |
⊢ ( 𝜑 → ( 𝐴 ∪ { 𝐵 } ) ⊆ ℂ ) |
64 |
|
resttopon |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ ( 𝐴 ∪ { 𝐵 } ) ⊆ ℂ ) → ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ∈ ( TopOn ‘ ( 𝐴 ∪ { 𝐵 } ) ) ) |
65 |
13 63 64
|
sylancr |
⊢ ( 𝜑 → ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ∈ ( TopOn ‘ ( 𝐴 ∪ { 𝐵 } ) ) ) |
66 |
|
ssun2 |
⊢ { 𝐵 } ⊆ ( 𝐴 ∪ { 𝐵 } ) |
67 |
|
snssg |
⊢ ( 𝐵 ∈ ℂ → ( 𝐵 ∈ ( 𝐴 ∪ { 𝐵 } ) ↔ { 𝐵 } ⊆ ( 𝐴 ∪ { 𝐵 } ) ) ) |
68 |
61 67
|
syl |
⊢ ( 𝜑 → ( 𝐵 ∈ ( 𝐴 ∪ { 𝐵 } ) ↔ { 𝐵 } ⊆ ( 𝐴 ∪ { 𝐵 } ) ) ) |
69 |
66 68
|
mpbiri |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 ∪ { 𝐵 } ) ) |
70 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑋 ⊆ ℂ ) |
71 |
70 1
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑅 ∈ ℂ ) |
72 |
|
eqid |
⊢ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) = ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) |
73 |
60 61 71 72 5
|
limcmpt |
⊢ ( 𝜑 → ( 𝐶 ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) limℂ 𝐵 ) ↔ ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ) ) |
74 |
7 73
|
mpbid |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ) |
75 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑌 ⊆ ℂ ) |
76 |
75 2
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑆 ∈ ℂ ) |
77 |
60 61 76 72 5
|
limcmpt |
⊢ ( 𝜑 → ( 𝐷 ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝑆 ) limℂ 𝐵 ) ↔ ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ) ) |
78 |
8 77
|
mpbid |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ) |
79 |
65 45 45 69 74 78
|
txcnp |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ 〈 if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) , if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) 〉 ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP ( 𝐾 ×t 𝐾 ) ) ‘ 𝐵 ) ) |
80 |
15
|
topontopi |
⊢ ( 𝐾 ×t 𝐾 ) ∈ Top |
81 |
80
|
a1i |
⊢ ( 𝜑 → ( 𝐾 ×t 𝐾 ) ∈ Top ) |
82 |
43
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ 〈 if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) , if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) 〉 ) : ( 𝐴 ∪ { 𝐵 } ) ⟶ ( 𝑋 × 𝑌 ) ) |
83 |
|
toponuni |
⊢ ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ∈ ( TopOn ‘ ( 𝐴 ∪ { 𝐵 } ) ) → ( 𝐴 ∪ { 𝐵 } ) = ∪ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ) |
84 |
65 83
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∪ { 𝐵 } ) = ∪ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ) |
85 |
84
|
feq2d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ 〈 if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) , if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) 〉 ) : ( 𝐴 ∪ { 𝐵 } ) ⟶ ( 𝑋 × 𝑌 ) ↔ ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ 〈 if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) , if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) 〉 ) : ∪ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ⟶ ( 𝑋 × 𝑌 ) ) ) |
86 |
82 85
|
mpbid |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ 〈 if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) , if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) 〉 ) : ∪ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ⟶ ( 𝑋 × 𝑌 ) ) |
87 |
|
eqid |
⊢ ∪ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) = ∪ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) |
88 |
15
|
toponunii |
⊢ ( ℂ × ℂ ) = ∪ ( 𝐾 ×t 𝐾 ) |
89 |
87 88
|
cnprest2 |
⊢ ( ( ( 𝐾 ×t 𝐾 ) ∈ Top ∧ ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ 〈 if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) , if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) 〉 ) : ∪ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ⟶ ( 𝑋 × 𝑌 ) ∧ ( 𝑋 × 𝑌 ) ⊆ ( ℂ × ℂ ) ) → ( ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ 〈 if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) , if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) 〉 ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP ( 𝐾 ×t 𝐾 ) ) ‘ 𝐵 ) ↔ ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ 〈 if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) , if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) 〉 ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP ( ( 𝐾 ×t 𝐾 ) ↾t ( 𝑋 × 𝑌 ) ) ) ‘ 𝐵 ) ) ) |
90 |
81 86 17 89
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ 〈 if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) , if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) 〉 ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP ( 𝐾 ×t 𝐾 ) ) ‘ 𝐵 ) ↔ ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ 〈 if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) , if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) 〉 ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP ( ( 𝐾 ×t 𝐾 ) ↾t ( 𝑋 × 𝑌 ) ) ) ‘ 𝐵 ) ) ) |
91 |
79 90
|
mpbid |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ 〈 if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) , if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) 〉 ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP ( ( 𝐾 ×t 𝐾 ) ↾t ( 𝑋 × 𝑌 ) ) ) ‘ 𝐵 ) ) |
92 |
6
|
oveq2i |
⊢ ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐽 ) = ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP ( ( 𝐾 ×t 𝐾 ) ↾t ( 𝑋 × 𝑌 ) ) ) |
93 |
92
|
fveq1i |
⊢ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐽 ) ‘ 𝐵 ) = ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP ( ( 𝐾 ×t 𝐾 ) ↾t ( 𝑋 × 𝑌 ) ) ) ‘ 𝐵 ) |
94 |
91 93
|
eleqtrrdi |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ 〈 if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) , if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) 〉 ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐽 ) ‘ 𝐵 ) ) |
95 |
|
iftrue |
⊢ ( 𝑥 = 𝐵 → if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) = 𝐶 ) |
96 |
|
iftrue |
⊢ ( 𝑥 = 𝐵 → if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) = 𝐷 ) |
97 |
95 96
|
opeq12d |
⊢ ( 𝑥 = 𝐵 → 〈 if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) , if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) 〉 = 〈 𝐶 , 𝐷 〉 ) |
98 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ 〈 if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) , if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) 〉 ) = ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ 〈 if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) , if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) 〉 ) |
99 |
|
opex |
⊢ 〈 𝐶 , 𝐷 〉 ∈ V |
100 |
97 98 99
|
fvmpt |
⊢ ( 𝐵 ∈ ( 𝐴 ∪ { 𝐵 } ) → ( ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ 〈 if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) , if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) 〉 ) ‘ 𝐵 ) = 〈 𝐶 , 𝐷 〉 ) |
101 |
69 100
|
syl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ 〈 if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) , if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) 〉 ) ‘ 𝐵 ) = 〈 𝐶 , 𝐷 〉 ) |
102 |
101
|
fveq2d |
⊢ ( 𝜑 → ( ( 𝐽 CnP 𝐾 ) ‘ ( ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ 〈 if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) , if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) 〉 ) ‘ 𝐵 ) ) = ( ( 𝐽 CnP 𝐾 ) ‘ 〈 𝐶 , 𝐷 〉 ) ) |
103 |
9 102
|
eleqtrrd |
⊢ ( 𝜑 → 𝐻 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ ( ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ 〈 if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) , if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) 〉 ) ‘ 𝐵 ) ) ) |
104 |
|
cnpco |
⊢ ( ( ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ 〈 if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) , if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) 〉 ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐽 ) ‘ 𝐵 ) ∧ 𝐻 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ ( ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ 〈 if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) , if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) 〉 ) ‘ 𝐵 ) ) ) → ( 𝐻 ∘ ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ 〈 if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) , if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) 〉 ) ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ) |
105 |
94 103 104
|
syl2anc |
⊢ ( 𝜑 → ( 𝐻 ∘ ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ 〈 if ( 𝑥 = 𝐵 , 𝐶 , 𝑅 ) , if ( 𝑥 = 𝐵 , 𝐷 , 𝑆 ) 〉 ) ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ) |
106 |
54 105
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , ( 𝐶 𝐻 𝐷 ) , ( 𝑅 𝐻 𝑆 ) ) ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ) |
107 |
47
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐻 : ( 𝑋 × 𝑌 ) ⟶ ℂ ) |
108 |
107 1 2
|
fovrnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑅 𝐻 𝑆 ) ∈ ℂ ) |
109 |
60 61 108 72 5
|
limcmpt |
⊢ ( 𝜑 → ( ( 𝐶 𝐻 𝐷 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ ( 𝑅 𝐻 𝑆 ) ) limℂ 𝐵 ) ↔ ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , ( 𝐶 𝐻 𝐷 ) , ( 𝑅 𝐻 𝑆 ) ) ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ) ) |
110 |
106 109
|
mpbird |
⊢ ( 𝜑 → ( 𝐶 𝐻 𝐷 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ ( 𝑅 𝐻 𝑆 ) ) limℂ 𝐵 ) ) |