Step |
Hyp |
Ref |
Expression |
1 |
|
limcco.r |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑅 ≠ 𝐶 ) ) → 𝑅 ∈ 𝐵 ) |
2 |
|
limcco.s |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝑆 ∈ ℂ ) |
3 |
|
limcco.c |
⊢ ( 𝜑 → 𝐶 ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) limℂ 𝑋 ) ) |
4 |
|
limcco.d |
⊢ ( 𝜑 → 𝐷 ∈ ( ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) limℂ 𝐶 ) ) |
5 |
|
limcco.1 |
⊢ ( 𝑦 = 𝑅 → 𝑆 = 𝑇 ) |
6 |
|
limcco.2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑅 = 𝐶 ) ) → 𝑇 = 𝐷 ) |
7 |
1
|
expr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑅 ≠ 𝐶 → 𝑅 ∈ 𝐵 ) ) |
8 |
7
|
necon1bd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ¬ 𝑅 ∈ 𝐵 → 𝑅 = 𝐶 ) ) |
9 |
|
limccl |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) limℂ 𝑋 ) ⊆ ℂ |
10 |
9 3
|
sselid |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
12 |
|
elsn2g |
⊢ ( 𝐶 ∈ ℂ → ( 𝑅 ∈ { 𝐶 } ↔ 𝑅 = 𝐶 ) ) |
13 |
11 12
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑅 ∈ { 𝐶 } ↔ 𝑅 = 𝐶 ) ) |
14 |
8 13
|
sylibrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ¬ 𝑅 ∈ 𝐵 → 𝑅 ∈ { 𝐶 } ) ) |
15 |
14
|
orrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑅 ∈ 𝐵 ∨ 𝑅 ∈ { 𝐶 } ) ) |
16 |
|
elun |
⊢ ( 𝑅 ∈ ( 𝐵 ∪ { 𝐶 } ) ↔ ( 𝑅 ∈ 𝐵 ∨ 𝑅 ∈ { 𝐶 } ) ) |
17 |
15 16
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑅 ∈ ( 𝐵 ∪ { 𝐶 } ) ) |
18 |
17
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) : 𝐴 ⟶ ( 𝐵 ∪ { 𝐶 } ) ) |
19 |
|
eqid |
⊢ ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) = ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) |
20 |
19 2
|
dmmptd |
⊢ ( 𝜑 → dom ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) = 𝐵 ) |
21 |
|
limcrcl |
⊢ ( 𝐷 ∈ ( ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) limℂ 𝐶 ) → ( ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) : dom ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) ⟶ ℂ ∧ dom ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) ⊆ ℂ ∧ 𝐶 ∈ ℂ ) ) |
22 |
4 21
|
syl |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) : dom ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) ⟶ ℂ ∧ dom ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) ⊆ ℂ ∧ 𝐶 ∈ ℂ ) ) |
23 |
22
|
simp2d |
⊢ ( 𝜑 → dom ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) ⊆ ℂ ) |
24 |
20 23
|
eqsstrrd |
⊢ ( 𝜑 → 𝐵 ⊆ ℂ ) |
25 |
10
|
snssd |
⊢ ( 𝜑 → { 𝐶 } ⊆ ℂ ) |
26 |
24 25
|
unssd |
⊢ ( 𝜑 → ( 𝐵 ∪ { 𝐶 } ) ⊆ ℂ ) |
27 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
28 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐵 ∪ { 𝐶 } ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐵 ∪ { 𝐶 } ) ) |
29 |
24 10 2 28 27
|
limcmpt |
⊢ ( 𝜑 → ( 𝐷 ∈ ( ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) limℂ 𝐶 ) ↔ ( 𝑦 ∈ ( 𝐵 ∪ { 𝐶 } ) ↦ if ( 𝑦 = 𝐶 , 𝐷 , 𝑆 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐵 ∪ { 𝐶 } ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐶 ) ) ) |
30 |
4 29
|
mpbid |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 ∪ { 𝐶 } ) ↦ if ( 𝑦 = 𝐶 , 𝐷 , 𝑆 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐵 ∪ { 𝐶 } ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐶 ) ) |
31 |
18 26 27 28 3 30
|
limccnp |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ( 𝐵 ∪ { 𝐶 } ) ↦ if ( 𝑦 = 𝐶 , 𝐷 , 𝑆 ) ) ‘ 𝐶 ) ∈ ( ( ( 𝑦 ∈ ( 𝐵 ∪ { 𝐶 } ) ↦ if ( 𝑦 = 𝐶 , 𝐷 , 𝑆 ) ) ∘ ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ) limℂ 𝑋 ) ) |
32 |
|
eqid |
⊢ ( 𝑦 ∈ ( 𝐵 ∪ { 𝐶 } ) ↦ if ( 𝑦 = 𝐶 , 𝐷 , 𝑆 ) ) = ( 𝑦 ∈ ( 𝐵 ∪ { 𝐶 } ) ↦ if ( 𝑦 = 𝐶 , 𝐷 , 𝑆 ) ) |
33 |
|
iftrue |
⊢ ( 𝑦 = 𝐶 → if ( 𝑦 = 𝐶 , 𝐷 , 𝑆 ) = 𝐷 ) |
34 |
|
ssun2 |
⊢ { 𝐶 } ⊆ ( 𝐵 ∪ { 𝐶 } ) |
35 |
|
snssg |
⊢ ( 𝐶 ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) limℂ 𝑋 ) → ( 𝐶 ∈ ( 𝐵 ∪ { 𝐶 } ) ↔ { 𝐶 } ⊆ ( 𝐵 ∪ { 𝐶 } ) ) ) |
36 |
3 35
|
syl |
⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐵 ∪ { 𝐶 } ) ↔ { 𝐶 } ⊆ ( 𝐵 ∪ { 𝐶 } ) ) ) |
37 |
34 36
|
mpbiri |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐵 ∪ { 𝐶 } ) ) |
38 |
32 33 37 4
|
fvmptd3 |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ( 𝐵 ∪ { 𝐶 } ) ↦ if ( 𝑦 = 𝐶 , 𝐷 , 𝑆 ) ) ‘ 𝐶 ) = 𝐷 ) |
39 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) = ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ) |
40 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 ∪ { 𝐶 } ) ↦ if ( 𝑦 = 𝐶 , 𝐷 , 𝑆 ) ) = ( 𝑦 ∈ ( 𝐵 ∪ { 𝐶 } ) ↦ if ( 𝑦 = 𝐶 , 𝐷 , 𝑆 ) ) ) |
41 |
|
eqeq1 |
⊢ ( 𝑦 = 𝑅 → ( 𝑦 = 𝐶 ↔ 𝑅 = 𝐶 ) ) |
42 |
41 5
|
ifbieq2d |
⊢ ( 𝑦 = 𝑅 → if ( 𝑦 = 𝐶 , 𝐷 , 𝑆 ) = if ( 𝑅 = 𝐶 , 𝐷 , 𝑇 ) ) |
43 |
17 39 40 42
|
fmptco |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ( 𝐵 ∪ { 𝐶 } ) ↦ if ( 𝑦 = 𝐶 , 𝐷 , 𝑆 ) ) ∘ ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ) = ( 𝑥 ∈ 𝐴 ↦ if ( 𝑅 = 𝐶 , 𝐷 , 𝑇 ) ) ) |
44 |
6
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑅 = 𝐶 ) → 𝑇 = 𝐷 ) |
45 |
44
|
ifeq1da |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑅 = 𝐶 , 𝑇 , 𝑇 ) = if ( 𝑅 = 𝐶 , 𝐷 , 𝑇 ) ) |
46 |
|
ifid |
⊢ if ( 𝑅 = 𝐶 , 𝑇 , 𝑇 ) = 𝑇 |
47 |
45 46
|
eqtr3di |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑅 = 𝐶 , 𝐷 , 𝑇 ) = 𝑇 ) |
48 |
47
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 𝑅 = 𝐶 , 𝐷 , 𝑇 ) ) = ( 𝑥 ∈ 𝐴 ↦ 𝑇 ) ) |
49 |
43 48
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ( 𝐵 ∪ { 𝐶 } ) ↦ if ( 𝑦 = 𝐶 , 𝐷 , 𝑆 ) ) ∘ ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ) = ( 𝑥 ∈ 𝐴 ↦ 𝑇 ) ) |
50 |
49
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝑦 ∈ ( 𝐵 ∪ { 𝐶 } ) ↦ if ( 𝑦 = 𝐶 , 𝐷 , 𝑆 ) ) ∘ ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ) limℂ 𝑋 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝑇 ) limℂ 𝑋 ) ) |
51 |
31 38 50
|
3eltr3d |
⊢ ( 𝜑 → 𝐷 ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝑇 ) limℂ 𝑋 ) ) |