Step |
Hyp |
Ref |
Expression |
1 |
|
limccog.1 |
⊢ ( 𝜑 → ran 𝐹 ⊆ ( dom 𝐺 ∖ { 𝐵 } ) ) |
2 |
|
limccog.2 |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐹 limℂ 𝐴 ) ) |
3 |
|
limccog.3 |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐺 limℂ 𝐵 ) ) |
4 |
|
limccl |
⊢ ( 𝐺 limℂ 𝐵 ) ⊆ ℂ |
5 |
4 3
|
sselid |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
6 |
|
limcrcl |
⊢ ( 𝐶 ∈ ( 𝐺 limℂ 𝐵 ) → ( 𝐺 : dom 𝐺 ⟶ ℂ ∧ dom 𝐺 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ) |
7 |
3 6
|
syl |
⊢ ( 𝜑 → ( 𝐺 : dom 𝐺 ⟶ ℂ ∧ dom 𝐺 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ) |
8 |
7
|
simp1d |
⊢ ( 𝜑 → 𝐺 : dom 𝐺 ⟶ ℂ ) |
9 |
7
|
simp2d |
⊢ ( 𝜑 → dom 𝐺 ⊆ ℂ ) |
10 |
7
|
simp3d |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
11 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
12 |
8 9 10 11
|
ellimc2 |
⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐺 limℂ 𝐵 ) ↔ ( 𝐶 ∈ ℂ ∧ ∀ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶 ∈ 𝑢 → ∃ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ( 𝐵 ∈ 𝑣 ∧ ( 𝐺 “ ( 𝑣 ∩ ( dom 𝐺 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) ) ) |
13 |
3 12
|
mpbid |
⊢ ( 𝜑 → ( 𝐶 ∈ ℂ ∧ ∀ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶 ∈ 𝑢 → ∃ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ( 𝐵 ∈ 𝑣 ∧ ( 𝐺 “ ( 𝑣 ∩ ( dom 𝐺 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) ) |
14 |
13
|
simprd |
⊢ ( 𝜑 → ∀ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶 ∈ 𝑢 → ∃ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ( 𝐵 ∈ 𝑣 ∧ ( 𝐺 “ ( 𝑣 ∩ ( dom 𝐺 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) |
15 |
14
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ) → ( 𝐶 ∈ 𝑢 → ∃ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ( 𝐵 ∈ 𝑣 ∧ ( 𝐺 “ ( 𝑣 ∩ ( dom 𝐺 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) |
16 |
15
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ) ∧ 𝐶 ∈ 𝑢 ) → ∃ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ( 𝐵 ∈ 𝑣 ∧ ( 𝐺 “ ( 𝑣 ∩ ( dom 𝐺 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) |
17 |
|
simp1ll |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ) ∧ 𝐶 ∈ 𝑢 ) ∧ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ∧ ( 𝐵 ∈ 𝑣 ∧ ( 𝐺 “ ( 𝑣 ∩ ( dom 𝐺 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) → 𝜑 ) |
18 |
|
simp2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ) ∧ 𝐶 ∈ 𝑢 ) ∧ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ∧ ( 𝐵 ∈ 𝑣 ∧ ( 𝐺 “ ( 𝑣 ∩ ( dom 𝐺 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) → 𝑣 ∈ ( TopOpen ‘ ℂfld ) ) |
19 |
|
simp3l |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ) ∧ 𝐶 ∈ 𝑢 ) ∧ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ∧ ( 𝐵 ∈ 𝑣 ∧ ( 𝐺 “ ( 𝑣 ∩ ( dom 𝐺 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) → 𝐵 ∈ 𝑣 ) |
20 |
|
limcrcl |
⊢ ( 𝐵 ∈ ( 𝐹 limℂ 𝐴 ) → ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐴 ∈ ℂ ) ) |
21 |
2 20
|
syl |
⊢ ( 𝜑 → ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐴 ∈ ℂ ) ) |
22 |
21
|
simp1d |
⊢ ( 𝜑 → 𝐹 : dom 𝐹 ⟶ ℂ ) |
23 |
21
|
simp2d |
⊢ ( 𝜑 → dom 𝐹 ⊆ ℂ ) |
24 |
21
|
simp3d |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
25 |
22 23 24 11
|
ellimc2 |
⊢ ( 𝜑 → ( 𝐵 ∈ ( 𝐹 limℂ 𝐴 ) ↔ ( 𝐵 ∈ ℂ ∧ ∀ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ( 𝐵 ∈ 𝑣 → ∃ 𝑤 ∈ ( TopOpen ‘ ℂfld ) ( 𝐴 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑣 ) ) ) ) ) |
26 |
2 25
|
mpbid |
⊢ ( 𝜑 → ( 𝐵 ∈ ℂ ∧ ∀ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ( 𝐵 ∈ 𝑣 → ∃ 𝑤 ∈ ( TopOpen ‘ ℂfld ) ( 𝐴 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑣 ) ) ) ) |
27 |
26
|
simprd |
⊢ ( 𝜑 → ∀ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ( 𝐵 ∈ 𝑣 → ∃ 𝑤 ∈ ( TopOpen ‘ ℂfld ) ( 𝐴 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑣 ) ) ) |
28 |
27
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ) → ( 𝐵 ∈ 𝑣 → ∃ 𝑤 ∈ ( TopOpen ‘ ℂfld ) ( 𝐴 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑣 ) ) ) |
29 |
28
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ) ∧ 𝐵 ∈ 𝑣 ) → ∃ 𝑤 ∈ ( TopOpen ‘ ℂfld ) ( 𝐴 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑣 ) ) |
30 |
17 18 19 29
|
syl21anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ) ∧ 𝐶 ∈ 𝑢 ) ∧ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ∧ ( 𝐵 ∈ 𝑣 ∧ ( 𝐺 “ ( 𝑣 ∩ ( dom 𝐺 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) → ∃ 𝑤 ∈ ( TopOpen ‘ ℂfld ) ( 𝐴 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑣 ) ) |
31 |
|
imaco |
⊢ ( ( 𝐺 ∘ 𝐹 ) “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) = ( 𝐺 “ ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ) |
32 |
17
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ) ∧ 𝐶 ∈ 𝑢 ) ∧ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ∧ ( 𝐵 ∈ 𝑣 ∧ ( 𝐺 “ ( 𝑣 ∩ ( dom 𝐺 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ∧ 𝑤 ∈ ( TopOpen ‘ ℂfld ) ) ∧ ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑣 ) → 𝜑 ) |
33 |
|
simpl3r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ) ∧ 𝐶 ∈ 𝑢 ) ∧ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ∧ ( 𝐵 ∈ 𝑣 ∧ ( 𝐺 “ ( 𝑣 ∩ ( dom 𝐺 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ∧ 𝑤 ∈ ( TopOpen ‘ ℂfld ) ) → ( 𝐺 “ ( 𝑣 ∩ ( dom 𝐺 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) |
34 |
33
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ) ∧ 𝐶 ∈ 𝑢 ) ∧ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ∧ ( 𝐵 ∈ 𝑣 ∧ ( 𝐺 “ ( 𝑣 ∩ ( dom 𝐺 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ∧ 𝑤 ∈ ( TopOpen ‘ ℂfld ) ) ∧ ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑣 ) → ( 𝐺 “ ( 𝑣 ∩ ( dom 𝐺 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) |
35 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ) ∧ 𝐶 ∈ 𝑢 ) ∧ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ∧ ( 𝐵 ∈ 𝑣 ∧ ( 𝐺 “ ( 𝑣 ∩ ( dom 𝐺 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ∧ 𝑤 ∈ ( TopOpen ‘ ℂfld ) ) ∧ ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑣 ) → ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑣 ) |
36 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑣 ) → ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑣 ) |
37 |
|
imassrn |
⊢ ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ ran 𝐹 |
38 |
37 1
|
sstrid |
⊢ ( 𝜑 → ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ ( dom 𝐺 ∖ { 𝐵 } ) ) |
39 |
38
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑣 ) → ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ ( dom 𝐺 ∖ { 𝐵 } ) ) |
40 |
36 39
|
ssind |
⊢ ( ( 𝜑 ∧ ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑣 ) → ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ ( 𝑣 ∩ ( dom 𝐺 ∖ { 𝐵 } ) ) ) |
41 |
|
imass2 |
⊢ ( ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ ( 𝑣 ∩ ( dom 𝐺 ∖ { 𝐵 } ) ) → ( 𝐺 “ ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ) ⊆ ( 𝐺 “ ( 𝑣 ∩ ( dom 𝐺 ∖ { 𝐵 } ) ) ) ) |
42 |
40 41
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑣 ) → ( 𝐺 “ ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ) ⊆ ( 𝐺 “ ( 𝑣 ∩ ( dom 𝐺 ∖ { 𝐵 } ) ) ) ) |
43 |
42
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝐺 “ ( 𝑣 ∩ ( dom 𝐺 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ∧ ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑣 ) → ( 𝐺 “ ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ) ⊆ ( 𝐺 “ ( 𝑣 ∩ ( dom 𝐺 ∖ { 𝐵 } ) ) ) ) |
44 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ( 𝐺 “ ( 𝑣 ∩ ( dom 𝐺 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ∧ ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑣 ) → ( 𝐺 “ ( 𝑣 ∩ ( dom 𝐺 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) |
45 |
43 44
|
sstrd |
⊢ ( ( ( 𝜑 ∧ ( 𝐺 “ ( 𝑣 ∩ ( dom 𝐺 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ∧ ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑣 ) → ( 𝐺 “ ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ) ⊆ 𝑢 ) |
46 |
32 34 35 45
|
syl21anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ) ∧ 𝐶 ∈ 𝑢 ) ∧ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ∧ ( 𝐵 ∈ 𝑣 ∧ ( 𝐺 “ ( 𝑣 ∩ ( dom 𝐺 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ∧ 𝑤 ∈ ( TopOpen ‘ ℂfld ) ) ∧ ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑣 ) → ( 𝐺 “ ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ) ⊆ 𝑢 ) |
47 |
31 46
|
eqsstrid |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ) ∧ 𝐶 ∈ 𝑢 ) ∧ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ∧ ( 𝐵 ∈ 𝑣 ∧ ( 𝐺 “ ( 𝑣 ∩ ( dom 𝐺 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ∧ 𝑤 ∈ ( TopOpen ‘ ℂfld ) ) ∧ ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑣 ) → ( ( 𝐺 ∘ 𝐹 ) “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑢 ) |
48 |
47
|
ex |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ) ∧ 𝐶 ∈ 𝑢 ) ∧ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ∧ ( 𝐵 ∈ 𝑣 ∧ ( 𝐺 “ ( 𝑣 ∩ ( dom 𝐺 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ∧ 𝑤 ∈ ( TopOpen ‘ ℂfld ) ) → ( ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑣 → ( ( 𝐺 ∘ 𝐹 ) “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑢 ) ) |
49 |
48
|
anim2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ) ∧ 𝐶 ∈ 𝑢 ) ∧ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ∧ ( 𝐵 ∈ 𝑣 ∧ ( 𝐺 “ ( 𝑣 ∩ ( dom 𝐺 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ∧ 𝑤 ∈ ( TopOpen ‘ ℂfld ) ) → ( ( 𝐴 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑣 ) → ( 𝐴 ∈ 𝑤 ∧ ( ( 𝐺 ∘ 𝐹 ) “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑢 ) ) ) |
50 |
49
|
reximdva |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ) ∧ 𝐶 ∈ 𝑢 ) ∧ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ∧ ( 𝐵 ∈ 𝑣 ∧ ( 𝐺 “ ( 𝑣 ∩ ( dom 𝐺 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) → ( ∃ 𝑤 ∈ ( TopOpen ‘ ℂfld ) ( 𝐴 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑣 ) → ∃ 𝑤 ∈ ( TopOpen ‘ ℂfld ) ( 𝐴 ∈ 𝑤 ∧ ( ( 𝐺 ∘ 𝐹 ) “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑢 ) ) ) |
51 |
30 50
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ) ∧ 𝐶 ∈ 𝑢 ) ∧ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ∧ ( 𝐵 ∈ 𝑣 ∧ ( 𝐺 “ ( 𝑣 ∩ ( dom 𝐺 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) → ∃ 𝑤 ∈ ( TopOpen ‘ ℂfld ) ( 𝐴 ∈ 𝑤 ∧ ( ( 𝐺 ∘ 𝐹 ) “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑢 ) ) |
52 |
51
|
rexlimdv3a |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ) ∧ 𝐶 ∈ 𝑢 ) → ( ∃ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ( 𝐵 ∈ 𝑣 ∧ ( 𝐺 “ ( 𝑣 ∩ ( dom 𝐺 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) → ∃ 𝑤 ∈ ( TopOpen ‘ ℂfld ) ( 𝐴 ∈ 𝑤 ∧ ( ( 𝐺 ∘ 𝐹 ) “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑢 ) ) ) |
53 |
16 52
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ) ∧ 𝐶 ∈ 𝑢 ) → ∃ 𝑤 ∈ ( TopOpen ‘ ℂfld ) ( 𝐴 ∈ 𝑤 ∧ ( ( 𝐺 ∘ 𝐹 ) “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑢 ) ) |
54 |
53
|
ex |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ) → ( 𝐶 ∈ 𝑢 → ∃ 𝑤 ∈ ( TopOpen ‘ ℂfld ) ( 𝐴 ∈ 𝑤 ∧ ( ( 𝐺 ∘ 𝐹 ) “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑢 ) ) ) |
55 |
54
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶 ∈ 𝑢 → ∃ 𝑤 ∈ ( TopOpen ‘ ℂfld ) ( 𝐴 ∈ 𝑤 ∧ ( ( 𝐺 ∘ 𝐹 ) “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑢 ) ) ) |
56 |
22
|
ffund |
⊢ ( 𝜑 → Fun 𝐹 ) |
57 |
|
fdmrn |
⊢ ( Fun 𝐹 ↔ 𝐹 : dom 𝐹 ⟶ ran 𝐹 ) |
58 |
56 57
|
sylib |
⊢ ( 𝜑 → 𝐹 : dom 𝐹 ⟶ ran 𝐹 ) |
59 |
1
|
difss2d |
⊢ ( 𝜑 → ran 𝐹 ⊆ dom 𝐺 ) |
60 |
58 59
|
fssd |
⊢ ( 𝜑 → 𝐹 : dom 𝐹 ⟶ dom 𝐺 ) |
61 |
|
fco |
⊢ ( ( 𝐺 : dom 𝐺 ⟶ ℂ ∧ 𝐹 : dom 𝐹 ⟶ dom 𝐺 ) → ( 𝐺 ∘ 𝐹 ) : dom 𝐹 ⟶ ℂ ) |
62 |
8 60 61
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) : dom 𝐹 ⟶ ℂ ) |
63 |
62 23 24 11
|
ellimc2 |
⊢ ( 𝜑 → ( 𝐶 ∈ ( ( 𝐺 ∘ 𝐹 ) limℂ 𝐴 ) ↔ ( 𝐶 ∈ ℂ ∧ ∀ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶 ∈ 𝑢 → ∃ 𝑤 ∈ ( TopOpen ‘ ℂfld ) ( 𝐴 ∈ 𝑤 ∧ ( ( 𝐺 ∘ 𝐹 ) “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑢 ) ) ) ) ) |
64 |
5 55 63
|
mpbir2and |
⊢ ( 𝜑 → 𝐶 ∈ ( ( 𝐺 ∘ 𝐹 ) limℂ 𝐴 ) ) |