Step |
Hyp |
Ref |
Expression |
1 |
|
limccl.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) |
2 |
1
|
fdmd |
⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) |
3 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ) → dom 𝐹 = 𝐴 ) |
4 |
|
limcrcl |
⊢ ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) → ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ) |
5 |
4
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ) → ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ) |
6 |
5
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ) → dom 𝐹 ⊆ ℂ ) |
7 |
3 6
|
eqsstrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ) → 𝐴 ⊆ ℂ ) |
8 |
5
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ) → 𝐵 ∈ ℂ ) |
9 |
7 8
|
jca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ) → ( 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ) |
10 |
9
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) → ( 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ) ) |
11 |
|
undif1 |
⊢ ( ( 𝐴 ∖ { 𝐵 } ) ∪ { 𝐵 } ) = ( 𝐴 ∪ { 𝐵 } ) |
12 |
|
difss |
⊢ ( 𝐴 ∖ { 𝐵 } ) ⊆ 𝐴 |
13 |
|
fssres |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ ( 𝐴 ∖ { 𝐵 } ) ⊆ 𝐴 ) → ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) : ( 𝐴 ∖ { 𝐵 } ) ⟶ ℂ ) |
14 |
1 12 13
|
sylancl |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) : ( 𝐴 ∖ { 𝐵 } ) ⟶ ℂ ) |
15 |
14
|
fdmd |
⊢ ( 𝜑 → dom ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) = ( 𝐴 ∖ { 𝐵 } ) ) |
16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) limℂ 𝐵 ) ) → dom ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) = ( 𝐴 ∖ { 𝐵 } ) ) |
17 |
|
limcrcl |
⊢ ( 𝑥 ∈ ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) limℂ 𝐵 ) → ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) : dom ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) ⟶ ℂ ∧ dom ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ) |
18 |
17
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) limℂ 𝐵 ) ) → ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) : dom ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) ⟶ ℂ ∧ dom ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ) |
19 |
18
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) limℂ 𝐵 ) ) → dom ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) ⊆ ℂ ) |
20 |
16 19
|
eqsstrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) limℂ 𝐵 ) ) → ( 𝐴 ∖ { 𝐵 } ) ⊆ ℂ ) |
21 |
18
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) limℂ 𝐵 ) ) → 𝐵 ∈ ℂ ) |
22 |
21
|
snssd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) limℂ 𝐵 ) ) → { 𝐵 } ⊆ ℂ ) |
23 |
20 22
|
unssd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) limℂ 𝐵 ) ) → ( ( 𝐴 ∖ { 𝐵 } ) ∪ { 𝐵 } ) ⊆ ℂ ) |
24 |
11 23
|
eqsstrrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) limℂ 𝐵 ) ) → ( 𝐴 ∪ { 𝐵 } ) ⊆ ℂ ) |
25 |
24
|
unssad |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) limℂ 𝐵 ) ) → 𝐴 ⊆ ℂ ) |
26 |
25 21
|
jca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) limℂ 𝐵 ) ) → ( 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ) |
27 |
26
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) limℂ 𝐵 ) → ( 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ) ) |
28 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∪ { 𝐵 } ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∪ { 𝐵 } ) ) |
29 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
30 |
|
eqid |
⊢ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ) = ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ) |
31 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ) → 𝐹 : 𝐴 ⟶ ℂ ) |
32 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ) → 𝐴 ⊆ ℂ ) |
33 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ) → 𝐵 ∈ ℂ ) |
34 |
28 29 30 31 32 33
|
ellimc |
⊢ ( ( 𝜑 ∧ ( 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ) → ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ↔ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐵 ) ) ) |
35 |
11
|
eqcomi |
⊢ ( 𝐴 ∪ { 𝐵 } ) = ( ( 𝐴 ∖ { 𝐵 } ) ∪ { 𝐵 } ) |
36 |
35
|
oveq2i |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∪ { 𝐵 } ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∖ { 𝐵 } ) ∪ { 𝐵 } ) ) |
37 |
35
|
mpteq1i |
⊢ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ) = ( 𝑧 ∈ ( ( 𝐴 ∖ { 𝐵 } ) ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ) |
38 |
|
elun |
⊢ ( 𝑧 ∈ ( ( 𝐴 ∖ { 𝐵 } ) ∪ { 𝐵 } ) ↔ ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ∨ 𝑧 ∈ { 𝐵 } ) ) |
39 |
|
velsn |
⊢ ( 𝑧 ∈ { 𝐵 } ↔ 𝑧 = 𝐵 ) |
40 |
39
|
orbi2i |
⊢ ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ∨ 𝑧 ∈ { 𝐵 } ) ↔ ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ∨ 𝑧 = 𝐵 ) ) |
41 |
|
pm5.61 |
⊢ ( ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ∨ 𝑧 = 𝐵 ) ∧ ¬ 𝑧 = 𝐵 ) ↔ ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ∧ ¬ 𝑧 = 𝐵 ) ) |
42 |
|
fvres |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) → ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
43 |
42
|
adantr |
⊢ ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ∧ ¬ 𝑧 = 𝐵 ) → ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
44 |
41 43
|
sylbi |
⊢ ( ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ∨ 𝑧 = 𝐵 ) ∧ ¬ 𝑧 = 𝐵 ) → ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
45 |
44
|
ifeq2da |
⊢ ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ∨ 𝑧 = 𝐵 ) → if ( 𝑧 = 𝐵 , 𝑥 , ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) ‘ 𝑧 ) ) = if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ) |
46 |
40 45
|
sylbi |
⊢ ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ∨ 𝑧 ∈ { 𝐵 } ) → if ( 𝑧 = 𝐵 , 𝑥 , ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) ‘ 𝑧 ) ) = if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ) |
47 |
38 46
|
sylbi |
⊢ ( 𝑧 ∈ ( ( 𝐴 ∖ { 𝐵 } ) ∪ { 𝐵 } ) → if ( 𝑧 = 𝐵 , 𝑥 , ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) ‘ 𝑧 ) ) = if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ) |
48 |
47
|
mpteq2ia |
⊢ ( 𝑧 ∈ ( ( 𝐴 ∖ { 𝐵 } ) ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) ‘ 𝑧 ) ) ) = ( 𝑧 ∈ ( ( 𝐴 ∖ { 𝐵 } ) ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ) |
49 |
37 48
|
eqtr4i |
⊢ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ) = ( 𝑧 ∈ ( ( 𝐴 ∖ { 𝐵 } ) ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) ‘ 𝑧 ) ) ) |
50 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ) → ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) : ( 𝐴 ∖ { 𝐵 } ) ⟶ ℂ ) |
51 |
32
|
ssdifssd |
⊢ ( ( 𝜑 ∧ ( 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ) → ( 𝐴 ∖ { 𝐵 } ) ⊆ ℂ ) |
52 |
36 29 49 50 51 33
|
ellimc |
⊢ ( ( 𝜑 ∧ ( 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ) → ( 𝑥 ∈ ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) limℂ 𝐵 ) ↔ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐵 ) ) ) |
53 |
34 52
|
bitr4d |
⊢ ( ( 𝜑 ∧ ( 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ) → ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ↔ 𝑥 ∈ ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) limℂ 𝐵 ) ) ) |
54 |
53
|
ex |
⊢ ( 𝜑 → ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ↔ 𝑥 ∈ ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) limℂ 𝐵 ) ) ) ) |
55 |
10 27 54
|
pm5.21ndd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ↔ 𝑥 ∈ ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) limℂ 𝐵 ) ) ) |
56 |
55
|
eqrdv |
⊢ ( 𝜑 → ( 𝐹 limℂ 𝐵 ) = ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) limℂ 𝐵 ) ) |