| Step | Hyp | Ref | Expression | 
						
							| 1 |  | limcflf.f | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ ℂ ) | 
						
							| 2 |  | limcflf.a | ⊢ ( 𝜑  →  𝐴  ⊆  ℂ ) | 
						
							| 3 |  | limcflf.b | ⊢ ( 𝜑  →  𝐵  ∈  ( ( limPt ‘ 𝐾 ) ‘ 𝐴 ) ) | 
						
							| 4 |  | limcflf.k | ⊢ 𝐾  =  ( TopOpen ‘ ℂfld ) | 
						
							| 5 |  | limcflf.c | ⊢ 𝐶  =  ( 𝐴  ∖  { 𝐵 } ) | 
						
							| 6 |  | limcflf.l | ⊢ 𝐿  =  ( ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } )  ↾t  𝐶 ) | 
						
							| 7 |  | vex | ⊢ 𝑡  ∈  V | 
						
							| 8 | 7 | inex1 | ⊢ ( 𝑡  ∩  𝐶 )  ∈  V | 
						
							| 9 | 8 | rgenw | ⊢ ∀ 𝑡  ∈  ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ( 𝑡  ∩  𝐶 )  ∈  V | 
						
							| 10 |  | eqid | ⊢ ( 𝑡  ∈  ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } )  ↦  ( 𝑡  ∩  𝐶 ) )  =  ( 𝑡  ∈  ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } )  ↦  ( 𝑡  ∩  𝐶 ) ) | 
						
							| 11 |  | imaeq2 | ⊢ ( 𝑠  =  ( 𝑡  ∩  𝐶 )  →  ( ( 𝐹  ↾  𝐶 )  “  𝑠 )  =  ( ( 𝐹  ↾  𝐶 )  “  ( 𝑡  ∩  𝐶 ) ) ) | 
						
							| 12 |  | inss2 | ⊢ ( 𝑡  ∩  𝐶 )  ⊆  𝐶 | 
						
							| 13 |  | resima2 | ⊢ ( ( 𝑡  ∩  𝐶 )  ⊆  𝐶  →  ( ( 𝐹  ↾  𝐶 )  “  ( 𝑡  ∩  𝐶 ) )  =  ( 𝐹  “  ( 𝑡  ∩  𝐶 ) ) ) | 
						
							| 14 | 12 13 | ax-mp | ⊢ ( ( 𝐹  ↾  𝐶 )  “  ( 𝑡  ∩  𝐶 ) )  =  ( 𝐹  “  ( 𝑡  ∩  𝐶 ) ) | 
						
							| 15 | 11 14 | eqtrdi | ⊢ ( 𝑠  =  ( 𝑡  ∩  𝐶 )  →  ( ( 𝐹  ↾  𝐶 )  “  𝑠 )  =  ( 𝐹  “  ( 𝑡  ∩  𝐶 ) ) ) | 
						
							| 16 | 15 | sseq1d | ⊢ ( 𝑠  =  ( 𝑡  ∩  𝐶 )  →  ( ( ( 𝐹  ↾  𝐶 )  “  𝑠 )  ⊆  𝑢  ↔  ( 𝐹  “  ( 𝑡  ∩  𝐶 ) )  ⊆  𝑢 ) ) | 
						
							| 17 | 10 16 | rexrnmptw | ⊢ ( ∀ 𝑡  ∈  ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ( 𝑡  ∩  𝐶 )  ∈  V  →  ( ∃ 𝑠  ∈  ran  ( 𝑡  ∈  ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } )  ↦  ( 𝑡  ∩  𝐶 ) ) ( ( 𝐹  ↾  𝐶 )  “  𝑠 )  ⊆  𝑢  ↔  ∃ 𝑡  ∈  ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ( 𝐹  “  ( 𝑡  ∩  𝐶 ) )  ⊆  𝑢 ) ) | 
						
							| 18 | 9 17 | mp1i | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℂ )  ∧  ( 𝑢  ∈  𝐾  ∧  𝑥  ∈  𝑢 ) )  →  ( ∃ 𝑠  ∈  ran  ( 𝑡  ∈  ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } )  ↦  ( 𝑡  ∩  𝐶 ) ) ( ( 𝐹  ↾  𝐶 )  “  𝑠 )  ⊆  𝑢  ↔  ∃ 𝑡  ∈  ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ( 𝐹  “  ( 𝑡  ∩  𝐶 ) )  ⊆  𝑢 ) ) | 
						
							| 19 |  | fvex | ⊢ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } )  ∈  V | 
						
							| 20 |  | difss | ⊢ ( 𝐴  ∖  { 𝐵 } )  ⊆  𝐴 | 
						
							| 21 | 5 20 | eqsstri | ⊢ 𝐶  ⊆  𝐴 | 
						
							| 22 | 21 2 | sstrid | ⊢ ( 𝜑  →  𝐶  ⊆  ℂ ) | 
						
							| 23 |  | cnex | ⊢ ℂ  ∈  V | 
						
							| 24 | 23 | ssex | ⊢ ( 𝐶  ⊆  ℂ  →  𝐶  ∈  V ) | 
						
							| 25 | 22 24 | syl | ⊢ ( 𝜑  →  𝐶  ∈  V ) | 
						
							| 26 | 25 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℂ )  ∧  ( 𝑢  ∈  𝐾  ∧  𝑥  ∈  𝑢 ) )  →  𝐶  ∈  V ) | 
						
							| 27 |  | restval | ⊢ ( ( ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } )  ∈  V  ∧  𝐶  ∈  V )  →  ( ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } )  ↾t  𝐶 )  =  ran  ( 𝑡  ∈  ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } )  ↦  ( 𝑡  ∩  𝐶 ) ) ) | 
						
							| 28 | 19 26 27 | sylancr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℂ )  ∧  ( 𝑢  ∈  𝐾  ∧  𝑥  ∈  𝑢 ) )  →  ( ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } )  ↾t  𝐶 )  =  ran  ( 𝑡  ∈  ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } )  ↦  ( 𝑡  ∩  𝐶 ) ) ) | 
						
							| 29 | 6 28 | eqtrid | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℂ )  ∧  ( 𝑢  ∈  𝐾  ∧  𝑥  ∈  𝑢 ) )  →  𝐿  =  ran  ( 𝑡  ∈  ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } )  ↦  ( 𝑡  ∩  𝐶 ) ) ) | 
						
							| 30 | 29 | rexeqdv | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℂ )  ∧  ( 𝑢  ∈  𝐾  ∧  𝑥  ∈  𝑢 ) )  →  ( ∃ 𝑠  ∈  𝐿 ( ( 𝐹  ↾  𝐶 )  “  𝑠 )  ⊆  𝑢  ↔  ∃ 𝑠  ∈  ran  ( 𝑡  ∈  ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } )  ↦  ( 𝑡  ∩  𝐶 ) ) ( ( 𝐹  ↾  𝐶 )  “  𝑠 )  ⊆  𝑢 ) ) | 
						
							| 31 | 4 | cnfldtop | ⊢ 𝐾  ∈  Top | 
						
							| 32 |  | opnneip | ⊢ ( ( 𝐾  ∈  Top  ∧  𝑤  ∈  𝐾  ∧  𝐵  ∈  𝑤 )  →  𝑤  ∈  ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ) | 
						
							| 33 | 31 32 | mp3an1 | ⊢ ( ( 𝑤  ∈  𝐾  ∧  𝐵  ∈  𝑤 )  →  𝑤  ∈  ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ) | 
						
							| 34 |  | id | ⊢ ( 𝑡  =  𝑤  →  𝑡  =  𝑤 ) | 
						
							| 35 | 5 | a1i | ⊢ ( 𝑡  =  𝑤  →  𝐶  =  ( 𝐴  ∖  { 𝐵 } ) ) | 
						
							| 36 | 34 35 | ineq12d | ⊢ ( 𝑡  =  𝑤  →  ( 𝑡  ∩  𝐶 )  =  ( 𝑤  ∩  ( 𝐴  ∖  { 𝐵 } ) ) ) | 
						
							| 37 | 36 | imaeq2d | ⊢ ( 𝑡  =  𝑤  →  ( 𝐹  “  ( 𝑡  ∩  𝐶 ) )  =  ( 𝐹  “  ( 𝑤  ∩  ( 𝐴  ∖  { 𝐵 } ) ) ) ) | 
						
							| 38 | 37 | sseq1d | ⊢ ( 𝑡  =  𝑤  →  ( ( 𝐹  “  ( 𝑡  ∩  𝐶 ) )  ⊆  𝑢  ↔  ( 𝐹  “  ( 𝑤  ∩  ( 𝐴  ∖  { 𝐵 } ) ) )  ⊆  𝑢 ) ) | 
						
							| 39 | 38 | rspcev | ⊢ ( ( 𝑤  ∈  ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } )  ∧  ( 𝐹  “  ( 𝑤  ∩  ( 𝐴  ∖  { 𝐵 } ) ) )  ⊆  𝑢 )  →  ∃ 𝑡  ∈  ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ( 𝐹  “  ( 𝑡  ∩  𝐶 ) )  ⊆  𝑢 ) | 
						
							| 40 | 33 39 | sylan | ⊢ ( ( ( 𝑤  ∈  𝐾  ∧  𝐵  ∈  𝑤 )  ∧  ( 𝐹  “  ( 𝑤  ∩  ( 𝐴  ∖  { 𝐵 } ) ) )  ⊆  𝑢 )  →  ∃ 𝑡  ∈  ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ( 𝐹  “  ( 𝑡  ∩  𝐶 ) )  ⊆  𝑢 ) | 
						
							| 41 | 40 | anasss | ⊢ ( ( 𝑤  ∈  𝐾  ∧  ( 𝐵  ∈  𝑤  ∧  ( 𝐹  “  ( 𝑤  ∩  ( 𝐴  ∖  { 𝐵 } ) ) )  ⊆  𝑢 ) )  →  ∃ 𝑡  ∈  ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ( 𝐹  “  ( 𝑡  ∩  𝐶 ) )  ⊆  𝑢 ) | 
						
							| 42 | 41 | rexlimiva | ⊢ ( ∃ 𝑤  ∈  𝐾 ( 𝐵  ∈  𝑤  ∧  ( 𝐹  “  ( 𝑤  ∩  ( 𝐴  ∖  { 𝐵 } ) ) )  ⊆  𝑢 )  →  ∃ 𝑡  ∈  ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ( 𝐹  “  ( 𝑡  ∩  𝐶 ) )  ⊆  𝑢 ) | 
						
							| 43 |  | simprl | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℂ )  ∧  ( 𝑢  ∈  𝐾  ∧  𝑥  ∈  𝑢 ) )  ∧  ( 𝑡  ∈  ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } )  ∧  ( 𝐹  “  ( 𝑡  ∩  𝐶 ) )  ⊆  𝑢 ) )  →  𝑡  ∈  ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ) | 
						
							| 44 | 4 | cnfldtopon | ⊢ 𝐾  ∈  ( TopOn ‘ ℂ ) | 
						
							| 45 | 44 | toponunii | ⊢ ℂ  =  ∪  𝐾 | 
						
							| 46 | 45 | neii1 | ⊢ ( ( 𝐾  ∈  Top  ∧  𝑡  ∈  ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) )  →  𝑡  ⊆  ℂ ) | 
						
							| 47 | 31 43 46 | sylancr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℂ )  ∧  ( 𝑢  ∈  𝐾  ∧  𝑥  ∈  𝑢 ) )  ∧  ( 𝑡  ∈  ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } )  ∧  ( 𝐹  “  ( 𝑡  ∩  𝐶 ) )  ⊆  𝑢 ) )  →  𝑡  ⊆  ℂ ) | 
						
							| 48 | 45 | ntropn | ⊢ ( ( 𝐾  ∈  Top  ∧  𝑡  ⊆  ℂ )  →  ( ( int ‘ 𝐾 ) ‘ 𝑡 )  ∈  𝐾 ) | 
						
							| 49 | 31 47 48 | sylancr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℂ )  ∧  ( 𝑢  ∈  𝐾  ∧  𝑥  ∈  𝑢 ) )  ∧  ( 𝑡  ∈  ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } )  ∧  ( 𝐹  “  ( 𝑡  ∩  𝐶 ) )  ⊆  𝑢 ) )  →  ( ( int ‘ 𝐾 ) ‘ 𝑡 )  ∈  𝐾 ) | 
						
							| 50 | 45 | lpss | ⊢ ( ( 𝐾  ∈  Top  ∧  𝐴  ⊆  ℂ )  →  ( ( limPt ‘ 𝐾 ) ‘ 𝐴 )  ⊆  ℂ ) | 
						
							| 51 | 31 2 50 | sylancr | ⊢ ( 𝜑  →  ( ( limPt ‘ 𝐾 ) ‘ 𝐴 )  ⊆  ℂ ) | 
						
							| 52 | 51 3 | sseldd | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 53 | 52 | snssd | ⊢ ( 𝜑  →  { 𝐵 }  ⊆  ℂ ) | 
						
							| 54 | 53 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℂ )  ∧  ( 𝑢  ∈  𝐾  ∧  𝑥  ∈  𝑢 ) )  ∧  ( 𝑡  ∈  ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } )  ∧  ( 𝐹  “  ( 𝑡  ∩  𝐶 ) )  ⊆  𝑢 ) )  →  { 𝐵 }  ⊆  ℂ ) | 
						
							| 55 | 45 | neiint | ⊢ ( ( 𝐾  ∈  Top  ∧  { 𝐵 }  ⊆  ℂ  ∧  𝑡  ⊆  ℂ )  →  ( 𝑡  ∈  ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } )  ↔  { 𝐵 }  ⊆  ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ) ) | 
						
							| 56 | 31 54 47 55 | mp3an2i | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℂ )  ∧  ( 𝑢  ∈  𝐾  ∧  𝑥  ∈  𝑢 ) )  ∧  ( 𝑡  ∈  ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } )  ∧  ( 𝐹  “  ( 𝑡  ∩  𝐶 ) )  ⊆  𝑢 ) )  →  ( 𝑡  ∈  ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } )  ↔  { 𝐵 }  ⊆  ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ) ) | 
						
							| 57 | 43 56 | mpbid | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℂ )  ∧  ( 𝑢  ∈  𝐾  ∧  𝑥  ∈  𝑢 ) )  ∧  ( 𝑡  ∈  ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } )  ∧  ( 𝐹  “  ( 𝑡  ∩  𝐶 ) )  ⊆  𝑢 ) )  →  { 𝐵 }  ⊆  ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ) | 
						
							| 58 | 52 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℂ )  ∧  ( 𝑢  ∈  𝐾  ∧  𝑥  ∈  𝑢 ) )  ∧  ( 𝑡  ∈  ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } )  ∧  ( 𝐹  “  ( 𝑡  ∩  𝐶 ) )  ⊆  𝑢 ) )  →  𝐵  ∈  ℂ ) | 
						
							| 59 |  | snssg | ⊢ ( 𝐵  ∈  ℂ  →  ( 𝐵  ∈  ( ( int ‘ 𝐾 ) ‘ 𝑡 )  ↔  { 𝐵 }  ⊆  ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ) ) | 
						
							| 60 | 58 59 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℂ )  ∧  ( 𝑢  ∈  𝐾  ∧  𝑥  ∈  𝑢 ) )  ∧  ( 𝑡  ∈  ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } )  ∧  ( 𝐹  “  ( 𝑡  ∩  𝐶 ) )  ⊆  𝑢 ) )  →  ( 𝐵  ∈  ( ( int ‘ 𝐾 ) ‘ 𝑡 )  ↔  { 𝐵 }  ⊆  ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ) ) | 
						
							| 61 | 57 60 | mpbird | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℂ )  ∧  ( 𝑢  ∈  𝐾  ∧  𝑥  ∈  𝑢 ) )  ∧  ( 𝑡  ∈  ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } )  ∧  ( 𝐹  “  ( 𝑡  ∩  𝐶 ) )  ⊆  𝑢 ) )  →  𝐵  ∈  ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ) | 
						
							| 62 | 45 | ntrss2 | ⊢ ( ( 𝐾  ∈  Top  ∧  𝑡  ⊆  ℂ )  →  ( ( int ‘ 𝐾 ) ‘ 𝑡 )  ⊆  𝑡 ) | 
						
							| 63 | 31 47 62 | sylancr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℂ )  ∧  ( 𝑢  ∈  𝐾  ∧  𝑥  ∈  𝑢 ) )  ∧  ( 𝑡  ∈  ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } )  ∧  ( 𝐹  “  ( 𝑡  ∩  𝐶 ) )  ⊆  𝑢 ) )  →  ( ( int ‘ 𝐾 ) ‘ 𝑡 )  ⊆  𝑡 ) | 
						
							| 64 |  | ssrin | ⊢ ( ( ( int ‘ 𝐾 ) ‘ 𝑡 )  ⊆  𝑡  →  ( ( ( int ‘ 𝐾 ) ‘ 𝑡 )  ∩  𝐶 )  ⊆  ( 𝑡  ∩  𝐶 ) ) | 
						
							| 65 |  | imass2 | ⊢ ( ( ( ( int ‘ 𝐾 ) ‘ 𝑡 )  ∩  𝐶 )  ⊆  ( 𝑡  ∩  𝐶 )  →  ( 𝐹  “  ( ( ( int ‘ 𝐾 ) ‘ 𝑡 )  ∩  𝐶 ) )  ⊆  ( 𝐹  “  ( 𝑡  ∩  𝐶 ) ) ) | 
						
							| 66 | 63 64 65 | 3syl | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℂ )  ∧  ( 𝑢  ∈  𝐾  ∧  𝑥  ∈  𝑢 ) )  ∧  ( 𝑡  ∈  ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } )  ∧  ( 𝐹  “  ( 𝑡  ∩  𝐶 ) )  ⊆  𝑢 ) )  →  ( 𝐹  “  ( ( ( int ‘ 𝐾 ) ‘ 𝑡 )  ∩  𝐶 ) )  ⊆  ( 𝐹  “  ( 𝑡  ∩  𝐶 ) ) ) | 
						
							| 67 |  | simprr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℂ )  ∧  ( 𝑢  ∈  𝐾  ∧  𝑥  ∈  𝑢 ) )  ∧  ( 𝑡  ∈  ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } )  ∧  ( 𝐹  “  ( 𝑡  ∩  𝐶 ) )  ⊆  𝑢 ) )  →  ( 𝐹  “  ( 𝑡  ∩  𝐶 ) )  ⊆  𝑢 ) | 
						
							| 68 | 66 67 | sstrd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℂ )  ∧  ( 𝑢  ∈  𝐾  ∧  𝑥  ∈  𝑢 ) )  ∧  ( 𝑡  ∈  ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } )  ∧  ( 𝐹  “  ( 𝑡  ∩  𝐶 ) )  ⊆  𝑢 ) )  →  ( 𝐹  “  ( ( ( int ‘ 𝐾 ) ‘ 𝑡 )  ∩  𝐶 ) )  ⊆  𝑢 ) | 
						
							| 69 |  | eleq2 | ⊢ ( 𝑤  =  ( ( int ‘ 𝐾 ) ‘ 𝑡 )  →  ( 𝐵  ∈  𝑤  ↔  𝐵  ∈  ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ) ) | 
						
							| 70 | 5 | ineq2i | ⊢ ( 𝑤  ∩  𝐶 )  =  ( 𝑤  ∩  ( 𝐴  ∖  { 𝐵 } ) ) | 
						
							| 71 |  | ineq1 | ⊢ ( 𝑤  =  ( ( int ‘ 𝐾 ) ‘ 𝑡 )  →  ( 𝑤  ∩  𝐶 )  =  ( ( ( int ‘ 𝐾 ) ‘ 𝑡 )  ∩  𝐶 ) ) | 
						
							| 72 | 70 71 | eqtr3id | ⊢ ( 𝑤  =  ( ( int ‘ 𝐾 ) ‘ 𝑡 )  →  ( 𝑤  ∩  ( 𝐴  ∖  { 𝐵 } ) )  =  ( ( ( int ‘ 𝐾 ) ‘ 𝑡 )  ∩  𝐶 ) ) | 
						
							| 73 | 72 | imaeq2d | ⊢ ( 𝑤  =  ( ( int ‘ 𝐾 ) ‘ 𝑡 )  →  ( 𝐹  “  ( 𝑤  ∩  ( 𝐴  ∖  { 𝐵 } ) ) )  =  ( 𝐹  “  ( ( ( int ‘ 𝐾 ) ‘ 𝑡 )  ∩  𝐶 ) ) ) | 
						
							| 74 | 73 | sseq1d | ⊢ ( 𝑤  =  ( ( int ‘ 𝐾 ) ‘ 𝑡 )  →  ( ( 𝐹  “  ( 𝑤  ∩  ( 𝐴  ∖  { 𝐵 } ) ) )  ⊆  𝑢  ↔  ( 𝐹  “  ( ( ( int ‘ 𝐾 ) ‘ 𝑡 )  ∩  𝐶 ) )  ⊆  𝑢 ) ) | 
						
							| 75 | 69 74 | anbi12d | ⊢ ( 𝑤  =  ( ( int ‘ 𝐾 ) ‘ 𝑡 )  →  ( ( 𝐵  ∈  𝑤  ∧  ( 𝐹  “  ( 𝑤  ∩  ( 𝐴  ∖  { 𝐵 } ) ) )  ⊆  𝑢 )  ↔  ( 𝐵  ∈  ( ( int ‘ 𝐾 ) ‘ 𝑡 )  ∧  ( 𝐹  “  ( ( ( int ‘ 𝐾 ) ‘ 𝑡 )  ∩  𝐶 ) )  ⊆  𝑢 ) ) ) | 
						
							| 76 | 75 | rspcev | ⊢ ( ( ( ( int ‘ 𝐾 ) ‘ 𝑡 )  ∈  𝐾  ∧  ( 𝐵  ∈  ( ( int ‘ 𝐾 ) ‘ 𝑡 )  ∧  ( 𝐹  “  ( ( ( int ‘ 𝐾 ) ‘ 𝑡 )  ∩  𝐶 ) )  ⊆  𝑢 ) )  →  ∃ 𝑤  ∈  𝐾 ( 𝐵  ∈  𝑤  ∧  ( 𝐹  “  ( 𝑤  ∩  ( 𝐴  ∖  { 𝐵 } ) ) )  ⊆  𝑢 ) ) | 
						
							| 77 | 49 61 68 76 | syl12anc | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℂ )  ∧  ( 𝑢  ∈  𝐾  ∧  𝑥  ∈  𝑢 ) )  ∧  ( 𝑡  ∈  ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } )  ∧  ( 𝐹  “  ( 𝑡  ∩  𝐶 ) )  ⊆  𝑢 ) )  →  ∃ 𝑤  ∈  𝐾 ( 𝐵  ∈  𝑤  ∧  ( 𝐹  “  ( 𝑤  ∩  ( 𝐴  ∖  { 𝐵 } ) ) )  ⊆  𝑢 ) ) | 
						
							| 78 | 77 | rexlimdvaa | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℂ )  ∧  ( 𝑢  ∈  𝐾  ∧  𝑥  ∈  𝑢 ) )  →  ( ∃ 𝑡  ∈  ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ( 𝐹  “  ( 𝑡  ∩  𝐶 ) )  ⊆  𝑢  →  ∃ 𝑤  ∈  𝐾 ( 𝐵  ∈  𝑤  ∧  ( 𝐹  “  ( 𝑤  ∩  ( 𝐴  ∖  { 𝐵 } ) ) )  ⊆  𝑢 ) ) ) | 
						
							| 79 | 42 78 | impbid2 | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℂ )  ∧  ( 𝑢  ∈  𝐾  ∧  𝑥  ∈  𝑢 ) )  →  ( ∃ 𝑤  ∈  𝐾 ( 𝐵  ∈  𝑤  ∧  ( 𝐹  “  ( 𝑤  ∩  ( 𝐴  ∖  { 𝐵 } ) ) )  ⊆  𝑢 )  ↔  ∃ 𝑡  ∈  ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ( 𝐹  “  ( 𝑡  ∩  𝐶 ) )  ⊆  𝑢 ) ) | 
						
							| 80 | 18 30 79 | 3bitr4rd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℂ )  ∧  ( 𝑢  ∈  𝐾  ∧  𝑥  ∈  𝑢 ) )  →  ( ∃ 𝑤  ∈  𝐾 ( 𝐵  ∈  𝑤  ∧  ( 𝐹  “  ( 𝑤  ∩  ( 𝐴  ∖  { 𝐵 } ) ) )  ⊆  𝑢 )  ↔  ∃ 𝑠  ∈  𝐿 ( ( 𝐹  ↾  𝐶 )  “  𝑠 )  ⊆  𝑢 ) ) | 
						
							| 81 | 80 | anassrs | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℂ )  ∧  𝑢  ∈  𝐾 )  ∧  𝑥  ∈  𝑢 )  →  ( ∃ 𝑤  ∈  𝐾 ( 𝐵  ∈  𝑤  ∧  ( 𝐹  “  ( 𝑤  ∩  ( 𝐴  ∖  { 𝐵 } ) ) )  ⊆  𝑢 )  ↔  ∃ 𝑠  ∈  𝐿 ( ( 𝐹  ↾  𝐶 )  “  𝑠 )  ⊆  𝑢 ) ) | 
						
							| 82 | 81 | pm5.74da | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℂ )  ∧  𝑢  ∈  𝐾 )  →  ( ( 𝑥  ∈  𝑢  →  ∃ 𝑤  ∈  𝐾 ( 𝐵  ∈  𝑤  ∧  ( 𝐹  “  ( 𝑤  ∩  ( 𝐴  ∖  { 𝐵 } ) ) )  ⊆  𝑢 ) )  ↔  ( 𝑥  ∈  𝑢  →  ∃ 𝑠  ∈  𝐿 ( ( 𝐹  ↾  𝐶 )  “  𝑠 )  ⊆  𝑢 ) ) ) | 
						
							| 83 | 82 | ralbidva | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℂ )  →  ( ∀ 𝑢  ∈  𝐾 ( 𝑥  ∈  𝑢  →  ∃ 𝑤  ∈  𝐾 ( 𝐵  ∈  𝑤  ∧  ( 𝐹  “  ( 𝑤  ∩  ( 𝐴  ∖  { 𝐵 } ) ) )  ⊆  𝑢 ) )  ↔  ∀ 𝑢  ∈  𝐾 ( 𝑥  ∈  𝑢  →  ∃ 𝑠  ∈  𝐿 ( ( 𝐹  ↾  𝐶 )  “  𝑠 )  ⊆  𝑢 ) ) ) | 
						
							| 84 | 83 | pm5.32da | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ℂ  ∧  ∀ 𝑢  ∈  𝐾 ( 𝑥  ∈  𝑢  →  ∃ 𝑤  ∈  𝐾 ( 𝐵  ∈  𝑤  ∧  ( 𝐹  “  ( 𝑤  ∩  ( 𝐴  ∖  { 𝐵 } ) ) )  ⊆  𝑢 ) ) )  ↔  ( 𝑥  ∈  ℂ  ∧  ∀ 𝑢  ∈  𝐾 ( 𝑥  ∈  𝑢  →  ∃ 𝑠  ∈  𝐿 ( ( 𝐹  ↾  𝐶 )  “  𝑠 )  ⊆  𝑢 ) ) ) ) | 
						
							| 85 | 1 2 52 4 | ellimc2 | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐹  limℂ  𝐵 )  ↔  ( 𝑥  ∈  ℂ  ∧  ∀ 𝑢  ∈  𝐾 ( 𝑥  ∈  𝑢  →  ∃ 𝑤  ∈  𝐾 ( 𝐵  ∈  𝑤  ∧  ( 𝐹  “  ( 𝑤  ∩  ( 𝐴  ∖  { 𝐵 } ) ) )  ⊆  𝑢 ) ) ) ) ) | 
						
							| 86 | 1 2 3 4 5 6 | limcflflem | ⊢ ( 𝜑  →  𝐿  ∈  ( Fil ‘ 𝐶 ) ) | 
						
							| 87 |  | fssres | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ  ∧  𝐶  ⊆  𝐴 )  →  ( 𝐹  ↾  𝐶 ) : 𝐶 ⟶ ℂ ) | 
						
							| 88 | 1 21 87 | sylancl | ⊢ ( 𝜑  →  ( 𝐹  ↾  𝐶 ) : 𝐶 ⟶ ℂ ) | 
						
							| 89 |  | isflf | ⊢ ( ( 𝐾  ∈  ( TopOn ‘ ℂ )  ∧  𝐿  ∈  ( Fil ‘ 𝐶 )  ∧  ( 𝐹  ↾  𝐶 ) : 𝐶 ⟶ ℂ )  →  ( 𝑥  ∈  ( ( 𝐾  fLimf  𝐿 ) ‘ ( 𝐹  ↾  𝐶 ) )  ↔  ( 𝑥  ∈  ℂ  ∧  ∀ 𝑢  ∈  𝐾 ( 𝑥  ∈  𝑢  →  ∃ 𝑠  ∈  𝐿 ( ( 𝐹  ↾  𝐶 )  “  𝑠 )  ⊆  𝑢 ) ) ) ) | 
						
							| 90 | 44 86 88 89 | mp3an2i | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( ( 𝐾  fLimf  𝐿 ) ‘ ( 𝐹  ↾  𝐶 ) )  ↔  ( 𝑥  ∈  ℂ  ∧  ∀ 𝑢  ∈  𝐾 ( 𝑥  ∈  𝑢  →  ∃ 𝑠  ∈  𝐿 ( ( 𝐹  ↾  𝐶 )  “  𝑠 )  ⊆  𝑢 ) ) ) ) | 
						
							| 91 | 84 85 90 | 3bitr4d | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐹  limℂ  𝐵 )  ↔  𝑥  ∈  ( ( 𝐾  fLimf  𝐿 ) ‘ ( 𝐹  ↾  𝐶 ) ) ) ) | 
						
							| 92 | 91 | eqrdv | ⊢ ( 𝜑  →  ( 𝐹  limℂ  𝐵 )  =  ( ( 𝐾  fLimf  𝐿 ) ‘ ( 𝐹  ↾  𝐶 ) ) ) |