Metamath Proof Explorer


Theorem limcflf

Description: The limit operator can be expressed as a filter limit, from the filter of neighborhoods of B restricted to A \ { B } , to the topology of the complex numbers. (If B is not a limit point of A , then it is still formally a filter limit, but the neighborhood filter is not a proper filter in this case.) (Contributed by Mario Carneiro, 25-Dec-2016)

Ref Expression
Hypotheses limcflf.f ( 𝜑𝐹 : 𝐴 ⟶ ℂ )
limcflf.a ( 𝜑𝐴 ⊆ ℂ )
limcflf.b ( 𝜑𝐵 ∈ ( ( limPt ‘ 𝐾 ) ‘ 𝐴 ) )
limcflf.k 𝐾 = ( TopOpen ‘ ℂfld )
limcflf.c 𝐶 = ( 𝐴 ∖ { 𝐵 } )
limcflf.l 𝐿 = ( ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↾t 𝐶 )
Assertion limcflf ( 𝜑 → ( 𝐹 lim 𝐵 ) = ( ( 𝐾 fLimf 𝐿 ) ‘ ( 𝐹𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 limcflf.f ( 𝜑𝐹 : 𝐴 ⟶ ℂ )
2 limcflf.a ( 𝜑𝐴 ⊆ ℂ )
3 limcflf.b ( 𝜑𝐵 ∈ ( ( limPt ‘ 𝐾 ) ‘ 𝐴 ) )
4 limcflf.k 𝐾 = ( TopOpen ‘ ℂfld )
5 limcflf.c 𝐶 = ( 𝐴 ∖ { 𝐵 } )
6 limcflf.l 𝐿 = ( ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↾t 𝐶 )
7 vex 𝑡 ∈ V
8 7 inex1 ( 𝑡𝐶 ) ∈ V
9 8 rgenw 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ( 𝑡𝐶 ) ∈ V
10 eqid ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↦ ( 𝑡𝐶 ) ) = ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↦ ( 𝑡𝐶 ) )
11 imaeq2 ( 𝑠 = ( 𝑡𝐶 ) → ( ( 𝐹𝐶 ) “ 𝑠 ) = ( ( 𝐹𝐶 ) “ ( 𝑡𝐶 ) ) )
12 inss2 ( 𝑡𝐶 ) ⊆ 𝐶
13 resima2 ( ( 𝑡𝐶 ) ⊆ 𝐶 → ( ( 𝐹𝐶 ) “ ( 𝑡𝐶 ) ) = ( 𝐹 “ ( 𝑡𝐶 ) ) )
14 12 13 ax-mp ( ( 𝐹𝐶 ) “ ( 𝑡𝐶 ) ) = ( 𝐹 “ ( 𝑡𝐶 ) )
15 11 14 eqtrdi ( 𝑠 = ( 𝑡𝐶 ) → ( ( 𝐹𝐶 ) “ 𝑠 ) = ( 𝐹 “ ( 𝑡𝐶 ) ) )
16 15 sseq1d ( 𝑠 = ( 𝑡𝐶 ) → ( ( ( 𝐹𝐶 ) “ 𝑠 ) ⊆ 𝑢 ↔ ( 𝐹 “ ( 𝑡𝐶 ) ) ⊆ 𝑢 ) )
17 10 16 rexrnmptw ( ∀ 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ( 𝑡𝐶 ) ∈ V → ( ∃ 𝑠 ∈ ran ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↦ ( 𝑡𝐶 ) ) ( ( 𝐹𝐶 ) “ 𝑠 ) ⊆ 𝑢 ↔ ∃ 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ( 𝐹 “ ( 𝑡𝐶 ) ) ⊆ 𝑢 ) )
18 9 17 mp1i ( ( ( 𝜑𝑥 ∈ ℂ ) ∧ ( 𝑢𝐾𝑥𝑢 ) ) → ( ∃ 𝑠 ∈ ran ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↦ ( 𝑡𝐶 ) ) ( ( 𝐹𝐶 ) “ 𝑠 ) ⊆ 𝑢 ↔ ∃ 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ( 𝐹 “ ( 𝑡𝐶 ) ) ⊆ 𝑢 ) )
19 fvex ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ∈ V
20 difss ( 𝐴 ∖ { 𝐵 } ) ⊆ 𝐴
21 5 20 eqsstri 𝐶𝐴
22 21 2 sstrid ( 𝜑𝐶 ⊆ ℂ )
23 cnex ℂ ∈ V
24 23 ssex ( 𝐶 ⊆ ℂ → 𝐶 ∈ V )
25 22 24 syl ( 𝜑𝐶 ∈ V )
26 25 ad2antrr ( ( ( 𝜑𝑥 ∈ ℂ ) ∧ ( 𝑢𝐾𝑥𝑢 ) ) → 𝐶 ∈ V )
27 restval ( ( ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ∈ V ∧ 𝐶 ∈ V ) → ( ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↾t 𝐶 ) = ran ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↦ ( 𝑡𝐶 ) ) )
28 19 26 27 sylancr ( ( ( 𝜑𝑥 ∈ ℂ ) ∧ ( 𝑢𝐾𝑥𝑢 ) ) → ( ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↾t 𝐶 ) = ran ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↦ ( 𝑡𝐶 ) ) )
29 6 28 eqtrid ( ( ( 𝜑𝑥 ∈ ℂ ) ∧ ( 𝑢𝐾𝑥𝑢 ) ) → 𝐿 = ran ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↦ ( 𝑡𝐶 ) ) )
30 29 rexeqdv ( ( ( 𝜑𝑥 ∈ ℂ ) ∧ ( 𝑢𝐾𝑥𝑢 ) ) → ( ∃ 𝑠𝐿 ( ( 𝐹𝐶 ) “ 𝑠 ) ⊆ 𝑢 ↔ ∃ 𝑠 ∈ ran ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↦ ( 𝑡𝐶 ) ) ( ( 𝐹𝐶 ) “ 𝑠 ) ⊆ 𝑢 ) )
31 4 cnfldtop 𝐾 ∈ Top
32 opnneip ( ( 𝐾 ∈ Top ∧ 𝑤𝐾𝐵𝑤 ) → 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) )
33 31 32 mp3an1 ( ( 𝑤𝐾𝐵𝑤 ) → 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) )
34 id ( 𝑡 = 𝑤𝑡 = 𝑤 )
35 5 a1i ( 𝑡 = 𝑤𝐶 = ( 𝐴 ∖ { 𝐵 } ) )
36 34 35 ineq12d ( 𝑡 = 𝑤 → ( 𝑡𝐶 ) = ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) )
37 36 imaeq2d ( 𝑡 = 𝑤 → ( 𝐹 “ ( 𝑡𝐶 ) ) = ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) )
38 37 sseq1d ( 𝑡 = 𝑤 → ( ( 𝐹 “ ( 𝑡𝐶 ) ) ⊆ 𝑢 ↔ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) )
39 38 rspcev ( ( 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) → ∃ 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ( 𝐹 “ ( 𝑡𝐶 ) ) ⊆ 𝑢 )
40 33 39 sylan ( ( ( 𝑤𝐾𝐵𝑤 ) ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) → ∃ 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ( 𝐹 “ ( 𝑡𝐶 ) ) ⊆ 𝑢 )
41 40 anasss ( ( 𝑤𝐾 ∧ ( 𝐵𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) → ∃ 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ( 𝐹 “ ( 𝑡𝐶 ) ) ⊆ 𝑢 )
42 41 rexlimiva ( ∃ 𝑤𝐾 ( 𝐵𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) → ∃ 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ( 𝐹 “ ( 𝑡𝐶 ) ) ⊆ 𝑢 )
43 simprl ( ( ( ( 𝜑𝑥 ∈ ℂ ) ∧ ( 𝑢𝐾𝑥𝑢 ) ) ∧ ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ∧ ( 𝐹 “ ( 𝑡𝐶 ) ) ⊆ 𝑢 ) ) → 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) )
44 4 cnfldtopon 𝐾 ∈ ( TopOn ‘ ℂ )
45 44 toponunii ℂ = 𝐾
46 45 neii1 ( ( 𝐾 ∈ Top ∧ 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ) → 𝑡 ⊆ ℂ )
47 31 43 46 sylancr ( ( ( ( 𝜑𝑥 ∈ ℂ ) ∧ ( 𝑢𝐾𝑥𝑢 ) ) ∧ ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ∧ ( 𝐹 “ ( 𝑡𝐶 ) ) ⊆ 𝑢 ) ) → 𝑡 ⊆ ℂ )
48 45 ntropn ( ( 𝐾 ∈ Top ∧ 𝑡 ⊆ ℂ ) → ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ∈ 𝐾 )
49 31 47 48 sylancr ( ( ( ( 𝜑𝑥 ∈ ℂ ) ∧ ( 𝑢𝐾𝑥𝑢 ) ) ∧ ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ∧ ( 𝐹 “ ( 𝑡𝐶 ) ) ⊆ 𝑢 ) ) → ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ∈ 𝐾 )
50 45 lpss ( ( 𝐾 ∈ Top ∧ 𝐴 ⊆ ℂ ) → ( ( limPt ‘ 𝐾 ) ‘ 𝐴 ) ⊆ ℂ )
51 31 2 50 sylancr ( 𝜑 → ( ( limPt ‘ 𝐾 ) ‘ 𝐴 ) ⊆ ℂ )
52 51 3 sseldd ( 𝜑𝐵 ∈ ℂ )
53 52 snssd ( 𝜑 → { 𝐵 } ⊆ ℂ )
54 53 ad3antrrr ( ( ( ( 𝜑𝑥 ∈ ℂ ) ∧ ( 𝑢𝐾𝑥𝑢 ) ) ∧ ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ∧ ( 𝐹 “ ( 𝑡𝐶 ) ) ⊆ 𝑢 ) ) → { 𝐵 } ⊆ ℂ )
55 45 neiint ( ( 𝐾 ∈ Top ∧ { 𝐵 } ⊆ ℂ ∧ 𝑡 ⊆ ℂ ) → ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↔ { 𝐵 } ⊆ ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ) )
56 31 54 47 55 mp3an2i ( ( ( ( 𝜑𝑥 ∈ ℂ ) ∧ ( 𝑢𝐾𝑥𝑢 ) ) ∧ ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ∧ ( 𝐹 “ ( 𝑡𝐶 ) ) ⊆ 𝑢 ) ) → ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↔ { 𝐵 } ⊆ ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ) )
57 43 56 mpbid ( ( ( ( 𝜑𝑥 ∈ ℂ ) ∧ ( 𝑢𝐾𝑥𝑢 ) ) ∧ ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ∧ ( 𝐹 “ ( 𝑡𝐶 ) ) ⊆ 𝑢 ) ) → { 𝐵 } ⊆ ( ( int ‘ 𝐾 ) ‘ 𝑡 ) )
58 52 ad3antrrr ( ( ( ( 𝜑𝑥 ∈ ℂ ) ∧ ( 𝑢𝐾𝑥𝑢 ) ) ∧ ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ∧ ( 𝐹 “ ( 𝑡𝐶 ) ) ⊆ 𝑢 ) ) → 𝐵 ∈ ℂ )
59 snssg ( 𝐵 ∈ ℂ → ( 𝐵 ∈ ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ↔ { 𝐵 } ⊆ ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ) )
60 58 59 syl ( ( ( ( 𝜑𝑥 ∈ ℂ ) ∧ ( 𝑢𝐾𝑥𝑢 ) ) ∧ ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ∧ ( 𝐹 “ ( 𝑡𝐶 ) ) ⊆ 𝑢 ) ) → ( 𝐵 ∈ ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ↔ { 𝐵 } ⊆ ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ) )
61 57 60 mpbird ( ( ( ( 𝜑𝑥 ∈ ℂ ) ∧ ( 𝑢𝐾𝑥𝑢 ) ) ∧ ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ∧ ( 𝐹 “ ( 𝑡𝐶 ) ) ⊆ 𝑢 ) ) → 𝐵 ∈ ( ( int ‘ 𝐾 ) ‘ 𝑡 ) )
62 45 ntrss2 ( ( 𝐾 ∈ Top ∧ 𝑡 ⊆ ℂ ) → ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ⊆ 𝑡 )
63 31 47 62 sylancr ( ( ( ( 𝜑𝑥 ∈ ℂ ) ∧ ( 𝑢𝐾𝑥𝑢 ) ) ∧ ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ∧ ( 𝐹 “ ( 𝑡𝐶 ) ) ⊆ 𝑢 ) ) → ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ⊆ 𝑡 )
64 ssrin ( ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ⊆ 𝑡 → ( ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ∩ 𝐶 ) ⊆ ( 𝑡𝐶 ) )
65 imass2 ( ( ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ∩ 𝐶 ) ⊆ ( 𝑡𝐶 ) → ( 𝐹 “ ( ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ∩ 𝐶 ) ) ⊆ ( 𝐹 “ ( 𝑡𝐶 ) ) )
66 63 64 65 3syl ( ( ( ( 𝜑𝑥 ∈ ℂ ) ∧ ( 𝑢𝐾𝑥𝑢 ) ) ∧ ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ∧ ( 𝐹 “ ( 𝑡𝐶 ) ) ⊆ 𝑢 ) ) → ( 𝐹 “ ( ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ∩ 𝐶 ) ) ⊆ ( 𝐹 “ ( 𝑡𝐶 ) ) )
67 simprr ( ( ( ( 𝜑𝑥 ∈ ℂ ) ∧ ( 𝑢𝐾𝑥𝑢 ) ) ∧ ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ∧ ( 𝐹 “ ( 𝑡𝐶 ) ) ⊆ 𝑢 ) ) → ( 𝐹 “ ( 𝑡𝐶 ) ) ⊆ 𝑢 )
68 66 67 sstrd ( ( ( ( 𝜑𝑥 ∈ ℂ ) ∧ ( 𝑢𝐾𝑥𝑢 ) ) ∧ ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ∧ ( 𝐹 “ ( 𝑡𝐶 ) ) ⊆ 𝑢 ) ) → ( 𝐹 “ ( ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ∩ 𝐶 ) ) ⊆ 𝑢 )
69 eleq2 ( 𝑤 = ( ( int ‘ 𝐾 ) ‘ 𝑡 ) → ( 𝐵𝑤𝐵 ∈ ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ) )
70 5 ineq2i ( 𝑤𝐶 ) = ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) )
71 ineq1 ( 𝑤 = ( ( int ‘ 𝐾 ) ‘ 𝑡 ) → ( 𝑤𝐶 ) = ( ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ∩ 𝐶 ) )
72 70 71 eqtr3id ( 𝑤 = ( ( int ‘ 𝐾 ) ‘ 𝑡 ) → ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) = ( ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ∩ 𝐶 ) )
73 72 imaeq2d ( 𝑤 = ( ( int ‘ 𝐾 ) ‘ 𝑡 ) → ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) = ( 𝐹 “ ( ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ∩ 𝐶 ) ) )
74 73 sseq1d ( 𝑤 = ( ( int ‘ 𝐾 ) ‘ 𝑡 ) → ( ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ↔ ( 𝐹 “ ( ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ∩ 𝐶 ) ) ⊆ 𝑢 ) )
75 69 74 anbi12d ( 𝑤 = ( ( int ‘ 𝐾 ) ‘ 𝑡 ) → ( ( 𝐵𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ↔ ( 𝐵 ∈ ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ∧ ( 𝐹 “ ( ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ∩ 𝐶 ) ) ⊆ 𝑢 ) ) )
76 75 rspcev ( ( ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ∈ 𝐾 ∧ ( 𝐵 ∈ ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ∧ ( 𝐹 “ ( ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ∩ 𝐶 ) ) ⊆ 𝑢 ) ) → ∃ 𝑤𝐾 ( 𝐵𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) )
77 49 61 68 76 syl12anc ( ( ( ( 𝜑𝑥 ∈ ℂ ) ∧ ( 𝑢𝐾𝑥𝑢 ) ) ∧ ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ∧ ( 𝐹 “ ( 𝑡𝐶 ) ) ⊆ 𝑢 ) ) → ∃ 𝑤𝐾 ( 𝐵𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) )
78 77 rexlimdvaa ( ( ( 𝜑𝑥 ∈ ℂ ) ∧ ( 𝑢𝐾𝑥𝑢 ) ) → ( ∃ 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ( 𝐹 “ ( 𝑡𝐶 ) ) ⊆ 𝑢 → ∃ 𝑤𝐾 ( 𝐵𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) )
79 42 78 impbid2 ( ( ( 𝜑𝑥 ∈ ℂ ) ∧ ( 𝑢𝐾𝑥𝑢 ) ) → ( ∃ 𝑤𝐾 ( 𝐵𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ↔ ∃ 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ( 𝐹 “ ( 𝑡𝐶 ) ) ⊆ 𝑢 ) )
80 18 30 79 3bitr4rd ( ( ( 𝜑𝑥 ∈ ℂ ) ∧ ( 𝑢𝐾𝑥𝑢 ) ) → ( ∃ 𝑤𝐾 ( 𝐵𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ↔ ∃ 𝑠𝐿 ( ( 𝐹𝐶 ) “ 𝑠 ) ⊆ 𝑢 ) )
81 80 anassrs ( ( ( ( 𝜑𝑥 ∈ ℂ ) ∧ 𝑢𝐾 ) ∧ 𝑥𝑢 ) → ( ∃ 𝑤𝐾 ( 𝐵𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ↔ ∃ 𝑠𝐿 ( ( 𝐹𝐶 ) “ 𝑠 ) ⊆ 𝑢 ) )
82 81 pm5.74da ( ( ( 𝜑𝑥 ∈ ℂ ) ∧ 𝑢𝐾 ) → ( ( 𝑥𝑢 → ∃ 𝑤𝐾 ( 𝐵𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ↔ ( 𝑥𝑢 → ∃ 𝑠𝐿 ( ( 𝐹𝐶 ) “ 𝑠 ) ⊆ 𝑢 ) ) )
83 82 ralbidva ( ( 𝜑𝑥 ∈ ℂ ) → ( ∀ 𝑢𝐾 ( 𝑥𝑢 → ∃ 𝑤𝐾 ( 𝐵𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ↔ ∀ 𝑢𝐾 ( 𝑥𝑢 → ∃ 𝑠𝐿 ( ( 𝐹𝐶 ) “ 𝑠 ) ⊆ 𝑢 ) ) )
84 83 pm5.32da ( 𝜑 → ( ( 𝑥 ∈ ℂ ∧ ∀ 𝑢𝐾 ( 𝑥𝑢 → ∃ 𝑤𝐾 ( 𝐵𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) ↔ ( 𝑥 ∈ ℂ ∧ ∀ 𝑢𝐾 ( 𝑥𝑢 → ∃ 𝑠𝐿 ( ( 𝐹𝐶 ) “ 𝑠 ) ⊆ 𝑢 ) ) ) )
85 1 2 52 4 ellimc2 ( 𝜑 → ( 𝑥 ∈ ( 𝐹 lim 𝐵 ) ↔ ( 𝑥 ∈ ℂ ∧ ∀ 𝑢𝐾 ( 𝑥𝑢 → ∃ 𝑤𝐾 ( 𝐵𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) ) )
86 1 2 3 4 5 6 limcflflem ( 𝜑𝐿 ∈ ( Fil ‘ 𝐶 ) )
87 fssres ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐶𝐴 ) → ( 𝐹𝐶 ) : 𝐶 ⟶ ℂ )
88 1 21 87 sylancl ( 𝜑 → ( 𝐹𝐶 ) : 𝐶 ⟶ ℂ )
89 isflf ( ( 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ 𝐿 ∈ ( Fil ‘ 𝐶 ) ∧ ( 𝐹𝐶 ) : 𝐶 ⟶ ℂ ) → ( 𝑥 ∈ ( ( 𝐾 fLimf 𝐿 ) ‘ ( 𝐹𝐶 ) ) ↔ ( 𝑥 ∈ ℂ ∧ ∀ 𝑢𝐾 ( 𝑥𝑢 → ∃ 𝑠𝐿 ( ( 𝐹𝐶 ) “ 𝑠 ) ⊆ 𝑢 ) ) ) )
90 44 86 88 89 mp3an2i ( 𝜑 → ( 𝑥 ∈ ( ( 𝐾 fLimf 𝐿 ) ‘ ( 𝐹𝐶 ) ) ↔ ( 𝑥 ∈ ℂ ∧ ∀ 𝑢𝐾 ( 𝑥𝑢 → ∃ 𝑠𝐿 ( ( 𝐹𝐶 ) “ 𝑠 ) ⊆ 𝑢 ) ) ) )
91 84 85 90 3bitr4d ( 𝜑 → ( 𝑥 ∈ ( 𝐹 lim 𝐵 ) ↔ 𝑥 ∈ ( ( 𝐾 fLimf 𝐿 ) ‘ ( 𝐹𝐶 ) ) ) )
92 91 eqrdv ( 𝜑 → ( 𝐹 lim 𝐵 ) = ( ( 𝐾 fLimf 𝐿 ) ‘ ( 𝐹𝐶 ) ) )