Step |
Hyp |
Ref |
Expression |
1 |
|
limcflf.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) |
2 |
|
limcflf.a |
⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) |
3 |
|
limcflf.b |
⊢ ( 𝜑 → 𝐵 ∈ ( ( limPt ‘ 𝐾 ) ‘ 𝐴 ) ) |
4 |
|
limcflf.k |
⊢ 𝐾 = ( TopOpen ‘ ℂfld ) |
5 |
|
limcflf.c |
⊢ 𝐶 = ( 𝐴 ∖ { 𝐵 } ) |
6 |
|
limcflf.l |
⊢ 𝐿 = ( ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↾t 𝐶 ) |
7 |
|
vex |
⊢ 𝑡 ∈ V |
8 |
7
|
inex1 |
⊢ ( 𝑡 ∩ 𝐶 ) ∈ V |
9 |
8
|
rgenw |
⊢ ∀ 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ( 𝑡 ∩ 𝐶 ) ∈ V |
10 |
|
eqid |
⊢ ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↦ ( 𝑡 ∩ 𝐶 ) ) = ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↦ ( 𝑡 ∩ 𝐶 ) ) |
11 |
|
imaeq2 |
⊢ ( 𝑠 = ( 𝑡 ∩ 𝐶 ) → ( ( 𝐹 ↾ 𝐶 ) “ 𝑠 ) = ( ( 𝐹 ↾ 𝐶 ) “ ( 𝑡 ∩ 𝐶 ) ) ) |
12 |
|
inss2 |
⊢ ( 𝑡 ∩ 𝐶 ) ⊆ 𝐶 |
13 |
|
resima2 |
⊢ ( ( 𝑡 ∩ 𝐶 ) ⊆ 𝐶 → ( ( 𝐹 ↾ 𝐶 ) “ ( 𝑡 ∩ 𝐶 ) ) = ( 𝐹 “ ( 𝑡 ∩ 𝐶 ) ) ) |
14 |
12 13
|
ax-mp |
⊢ ( ( 𝐹 ↾ 𝐶 ) “ ( 𝑡 ∩ 𝐶 ) ) = ( 𝐹 “ ( 𝑡 ∩ 𝐶 ) ) |
15 |
11 14
|
eqtrdi |
⊢ ( 𝑠 = ( 𝑡 ∩ 𝐶 ) → ( ( 𝐹 ↾ 𝐶 ) “ 𝑠 ) = ( 𝐹 “ ( 𝑡 ∩ 𝐶 ) ) ) |
16 |
15
|
sseq1d |
⊢ ( 𝑠 = ( 𝑡 ∩ 𝐶 ) → ( ( ( 𝐹 ↾ 𝐶 ) “ 𝑠 ) ⊆ 𝑢 ↔ ( 𝐹 “ ( 𝑡 ∩ 𝐶 ) ) ⊆ 𝑢 ) ) |
17 |
10 16
|
rexrnmptw |
⊢ ( ∀ 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ( 𝑡 ∩ 𝐶 ) ∈ V → ( ∃ 𝑠 ∈ ran ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↦ ( 𝑡 ∩ 𝐶 ) ) ( ( 𝐹 ↾ 𝐶 ) “ 𝑠 ) ⊆ 𝑢 ↔ ∃ 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ( 𝐹 “ ( 𝑡 ∩ 𝐶 ) ) ⊆ 𝑢 ) ) |
18 |
9 17
|
mp1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢 ) ) → ( ∃ 𝑠 ∈ ran ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↦ ( 𝑡 ∩ 𝐶 ) ) ( ( 𝐹 ↾ 𝐶 ) “ 𝑠 ) ⊆ 𝑢 ↔ ∃ 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ( 𝐹 “ ( 𝑡 ∩ 𝐶 ) ) ⊆ 𝑢 ) ) |
19 |
|
fvex |
⊢ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ∈ V |
20 |
|
difss |
⊢ ( 𝐴 ∖ { 𝐵 } ) ⊆ 𝐴 |
21 |
5 20
|
eqsstri |
⊢ 𝐶 ⊆ 𝐴 |
22 |
21 2
|
sstrid |
⊢ ( 𝜑 → 𝐶 ⊆ ℂ ) |
23 |
|
cnex |
⊢ ℂ ∈ V |
24 |
23
|
ssex |
⊢ ( 𝐶 ⊆ ℂ → 𝐶 ∈ V ) |
25 |
22 24
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ V ) |
26 |
25
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢 ) ) → 𝐶 ∈ V ) |
27 |
|
restval |
⊢ ( ( ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ∈ V ∧ 𝐶 ∈ V ) → ( ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↾t 𝐶 ) = ran ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↦ ( 𝑡 ∩ 𝐶 ) ) ) |
28 |
19 26 27
|
sylancr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢 ) ) → ( ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↾t 𝐶 ) = ran ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↦ ( 𝑡 ∩ 𝐶 ) ) ) |
29 |
6 28
|
syl5eq |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢 ) ) → 𝐿 = ran ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↦ ( 𝑡 ∩ 𝐶 ) ) ) |
30 |
29
|
rexeqdv |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢 ) ) → ( ∃ 𝑠 ∈ 𝐿 ( ( 𝐹 ↾ 𝐶 ) “ 𝑠 ) ⊆ 𝑢 ↔ ∃ 𝑠 ∈ ran ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↦ ( 𝑡 ∩ 𝐶 ) ) ( ( 𝐹 ↾ 𝐶 ) “ 𝑠 ) ⊆ 𝑢 ) ) |
31 |
4
|
cnfldtop |
⊢ 𝐾 ∈ Top |
32 |
|
opnneip |
⊢ ( ( 𝐾 ∈ Top ∧ 𝑤 ∈ 𝐾 ∧ 𝐵 ∈ 𝑤 ) → 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ) |
33 |
31 32
|
mp3an1 |
⊢ ( ( 𝑤 ∈ 𝐾 ∧ 𝐵 ∈ 𝑤 ) → 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ) |
34 |
|
id |
⊢ ( 𝑡 = 𝑤 → 𝑡 = 𝑤 ) |
35 |
5
|
a1i |
⊢ ( 𝑡 = 𝑤 → 𝐶 = ( 𝐴 ∖ { 𝐵 } ) ) |
36 |
34 35
|
ineq12d |
⊢ ( 𝑡 = 𝑤 → ( 𝑡 ∩ 𝐶 ) = ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) |
37 |
36
|
imaeq2d |
⊢ ( 𝑡 = 𝑤 → ( 𝐹 “ ( 𝑡 ∩ 𝐶 ) ) = ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ) |
38 |
37
|
sseq1d |
⊢ ( 𝑡 = 𝑤 → ( ( 𝐹 “ ( 𝑡 ∩ 𝐶 ) ) ⊆ 𝑢 ↔ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) |
39 |
38
|
rspcev |
⊢ ( ( 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) → ∃ 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ( 𝐹 “ ( 𝑡 ∩ 𝐶 ) ) ⊆ 𝑢 ) |
40 |
33 39
|
sylan |
⊢ ( ( ( 𝑤 ∈ 𝐾 ∧ 𝐵 ∈ 𝑤 ) ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) → ∃ 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ( 𝐹 “ ( 𝑡 ∩ 𝐶 ) ) ⊆ 𝑢 ) |
41 |
40
|
anasss |
⊢ ( ( 𝑤 ∈ 𝐾 ∧ ( 𝐵 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) → ∃ 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ( 𝐹 “ ( 𝑡 ∩ 𝐶 ) ) ⊆ 𝑢 ) |
42 |
41
|
rexlimiva |
⊢ ( ∃ 𝑤 ∈ 𝐾 ( 𝐵 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) → ∃ 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ( 𝐹 “ ( 𝑡 ∩ 𝐶 ) ) ⊆ 𝑢 ) |
43 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢 ) ) ∧ ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ∧ ( 𝐹 “ ( 𝑡 ∩ 𝐶 ) ) ⊆ 𝑢 ) ) → 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ) |
44 |
4
|
cnfldtopon |
⊢ 𝐾 ∈ ( TopOn ‘ ℂ ) |
45 |
44
|
toponunii |
⊢ ℂ = ∪ 𝐾 |
46 |
45
|
neii1 |
⊢ ( ( 𝐾 ∈ Top ∧ 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ) → 𝑡 ⊆ ℂ ) |
47 |
31 43 46
|
sylancr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢 ) ) ∧ ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ∧ ( 𝐹 “ ( 𝑡 ∩ 𝐶 ) ) ⊆ 𝑢 ) ) → 𝑡 ⊆ ℂ ) |
48 |
45
|
ntropn |
⊢ ( ( 𝐾 ∈ Top ∧ 𝑡 ⊆ ℂ ) → ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ∈ 𝐾 ) |
49 |
31 47 48
|
sylancr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢 ) ) ∧ ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ∧ ( 𝐹 “ ( 𝑡 ∩ 𝐶 ) ) ⊆ 𝑢 ) ) → ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ∈ 𝐾 ) |
50 |
45
|
lpss |
⊢ ( ( 𝐾 ∈ Top ∧ 𝐴 ⊆ ℂ ) → ( ( limPt ‘ 𝐾 ) ‘ 𝐴 ) ⊆ ℂ ) |
51 |
31 2 50
|
sylancr |
⊢ ( 𝜑 → ( ( limPt ‘ 𝐾 ) ‘ 𝐴 ) ⊆ ℂ ) |
52 |
51 3
|
sseldd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
53 |
52
|
snssd |
⊢ ( 𝜑 → { 𝐵 } ⊆ ℂ ) |
54 |
53
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢 ) ) ∧ ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ∧ ( 𝐹 “ ( 𝑡 ∩ 𝐶 ) ) ⊆ 𝑢 ) ) → { 𝐵 } ⊆ ℂ ) |
55 |
45
|
neiint |
⊢ ( ( 𝐾 ∈ Top ∧ { 𝐵 } ⊆ ℂ ∧ 𝑡 ⊆ ℂ ) → ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↔ { 𝐵 } ⊆ ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ) ) |
56 |
31 54 47 55
|
mp3an2i |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢 ) ) ∧ ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ∧ ( 𝐹 “ ( 𝑡 ∩ 𝐶 ) ) ⊆ 𝑢 ) ) → ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↔ { 𝐵 } ⊆ ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ) ) |
57 |
43 56
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢 ) ) ∧ ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ∧ ( 𝐹 “ ( 𝑡 ∩ 𝐶 ) ) ⊆ 𝑢 ) ) → { 𝐵 } ⊆ ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ) |
58 |
52
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢 ) ) ∧ ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ∧ ( 𝐹 “ ( 𝑡 ∩ 𝐶 ) ) ⊆ 𝑢 ) ) → 𝐵 ∈ ℂ ) |
59 |
|
snssg |
⊢ ( 𝐵 ∈ ℂ → ( 𝐵 ∈ ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ↔ { 𝐵 } ⊆ ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ) ) |
60 |
58 59
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢 ) ) ∧ ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ∧ ( 𝐹 “ ( 𝑡 ∩ 𝐶 ) ) ⊆ 𝑢 ) ) → ( 𝐵 ∈ ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ↔ { 𝐵 } ⊆ ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ) ) |
61 |
57 60
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢 ) ) ∧ ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ∧ ( 𝐹 “ ( 𝑡 ∩ 𝐶 ) ) ⊆ 𝑢 ) ) → 𝐵 ∈ ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ) |
62 |
45
|
ntrss2 |
⊢ ( ( 𝐾 ∈ Top ∧ 𝑡 ⊆ ℂ ) → ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ⊆ 𝑡 ) |
63 |
31 47 62
|
sylancr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢 ) ) ∧ ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ∧ ( 𝐹 “ ( 𝑡 ∩ 𝐶 ) ) ⊆ 𝑢 ) ) → ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ⊆ 𝑡 ) |
64 |
|
ssrin |
⊢ ( ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ⊆ 𝑡 → ( ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ∩ 𝐶 ) ⊆ ( 𝑡 ∩ 𝐶 ) ) |
65 |
|
imass2 |
⊢ ( ( ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ∩ 𝐶 ) ⊆ ( 𝑡 ∩ 𝐶 ) → ( 𝐹 “ ( ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ∩ 𝐶 ) ) ⊆ ( 𝐹 “ ( 𝑡 ∩ 𝐶 ) ) ) |
66 |
63 64 65
|
3syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢 ) ) ∧ ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ∧ ( 𝐹 “ ( 𝑡 ∩ 𝐶 ) ) ⊆ 𝑢 ) ) → ( 𝐹 “ ( ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ∩ 𝐶 ) ) ⊆ ( 𝐹 “ ( 𝑡 ∩ 𝐶 ) ) ) |
67 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢 ) ) ∧ ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ∧ ( 𝐹 “ ( 𝑡 ∩ 𝐶 ) ) ⊆ 𝑢 ) ) → ( 𝐹 “ ( 𝑡 ∩ 𝐶 ) ) ⊆ 𝑢 ) |
68 |
66 67
|
sstrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢 ) ) ∧ ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ∧ ( 𝐹 “ ( 𝑡 ∩ 𝐶 ) ) ⊆ 𝑢 ) ) → ( 𝐹 “ ( ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ∩ 𝐶 ) ) ⊆ 𝑢 ) |
69 |
|
eleq2 |
⊢ ( 𝑤 = ( ( int ‘ 𝐾 ) ‘ 𝑡 ) → ( 𝐵 ∈ 𝑤 ↔ 𝐵 ∈ ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ) ) |
70 |
5
|
ineq2i |
⊢ ( 𝑤 ∩ 𝐶 ) = ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) |
71 |
|
ineq1 |
⊢ ( 𝑤 = ( ( int ‘ 𝐾 ) ‘ 𝑡 ) → ( 𝑤 ∩ 𝐶 ) = ( ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ∩ 𝐶 ) ) |
72 |
70 71
|
eqtr3id |
⊢ ( 𝑤 = ( ( int ‘ 𝐾 ) ‘ 𝑡 ) → ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) = ( ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ∩ 𝐶 ) ) |
73 |
72
|
imaeq2d |
⊢ ( 𝑤 = ( ( int ‘ 𝐾 ) ‘ 𝑡 ) → ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) = ( 𝐹 “ ( ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ∩ 𝐶 ) ) ) |
74 |
73
|
sseq1d |
⊢ ( 𝑤 = ( ( int ‘ 𝐾 ) ‘ 𝑡 ) → ( ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ↔ ( 𝐹 “ ( ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ∩ 𝐶 ) ) ⊆ 𝑢 ) ) |
75 |
69 74
|
anbi12d |
⊢ ( 𝑤 = ( ( int ‘ 𝐾 ) ‘ 𝑡 ) → ( ( 𝐵 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ↔ ( 𝐵 ∈ ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ∧ ( 𝐹 “ ( ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ∩ 𝐶 ) ) ⊆ 𝑢 ) ) ) |
76 |
75
|
rspcev |
⊢ ( ( ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ∈ 𝐾 ∧ ( 𝐵 ∈ ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ∧ ( 𝐹 “ ( ( ( int ‘ 𝐾 ) ‘ 𝑡 ) ∩ 𝐶 ) ) ⊆ 𝑢 ) ) → ∃ 𝑤 ∈ 𝐾 ( 𝐵 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) |
77 |
49 61 68 76
|
syl12anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢 ) ) ∧ ( 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ∧ ( 𝐹 “ ( 𝑡 ∩ 𝐶 ) ) ⊆ 𝑢 ) ) → ∃ 𝑤 ∈ 𝐾 ( 𝐵 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) |
78 |
77
|
rexlimdvaa |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢 ) ) → ( ∃ 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ( 𝐹 “ ( 𝑡 ∩ 𝐶 ) ) ⊆ 𝑢 → ∃ 𝑤 ∈ 𝐾 ( 𝐵 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) |
79 |
42 78
|
impbid2 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢 ) ) → ( ∃ 𝑤 ∈ 𝐾 ( 𝐵 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ↔ ∃ 𝑡 ∈ ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ( 𝐹 “ ( 𝑡 ∩ 𝐶 ) ) ⊆ 𝑢 ) ) |
80 |
18 30 79
|
3bitr4rd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢 ) ) → ( ∃ 𝑤 ∈ 𝐾 ( 𝐵 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ↔ ∃ 𝑠 ∈ 𝐿 ( ( 𝐹 ↾ 𝐶 ) “ 𝑠 ) ⊆ 𝑢 ) ) |
81 |
80
|
anassrs |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) ∧ 𝑢 ∈ 𝐾 ) ∧ 𝑥 ∈ 𝑢 ) → ( ∃ 𝑤 ∈ 𝐾 ( 𝐵 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ↔ ∃ 𝑠 ∈ 𝐿 ( ( 𝐹 ↾ 𝐶 ) “ 𝑠 ) ⊆ 𝑢 ) ) |
82 |
81
|
pm5.74da |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) ∧ 𝑢 ∈ 𝐾 ) → ( ( 𝑥 ∈ 𝑢 → ∃ 𝑤 ∈ 𝐾 ( 𝐵 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ↔ ( 𝑥 ∈ 𝑢 → ∃ 𝑠 ∈ 𝐿 ( ( 𝐹 ↾ 𝐶 ) “ 𝑠 ) ⊆ 𝑢 ) ) ) |
83 |
82
|
ralbidva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( ∀ 𝑢 ∈ 𝐾 ( 𝑥 ∈ 𝑢 → ∃ 𝑤 ∈ 𝐾 ( 𝐵 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ↔ ∀ 𝑢 ∈ 𝐾 ( 𝑥 ∈ 𝑢 → ∃ 𝑠 ∈ 𝐿 ( ( 𝐹 ↾ 𝐶 ) “ 𝑠 ) ⊆ 𝑢 ) ) ) |
84 |
83
|
pm5.32da |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℂ ∧ ∀ 𝑢 ∈ 𝐾 ( 𝑥 ∈ 𝑢 → ∃ 𝑤 ∈ 𝐾 ( 𝐵 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) ↔ ( 𝑥 ∈ ℂ ∧ ∀ 𝑢 ∈ 𝐾 ( 𝑥 ∈ 𝑢 → ∃ 𝑠 ∈ 𝐿 ( ( 𝐹 ↾ 𝐶 ) “ 𝑠 ) ⊆ 𝑢 ) ) ) ) |
85 |
1 2 52 4
|
ellimc2 |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ↔ ( 𝑥 ∈ ℂ ∧ ∀ 𝑢 ∈ 𝐾 ( 𝑥 ∈ 𝑢 → ∃ 𝑤 ∈ 𝐾 ( 𝐵 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) ) ) |
86 |
1 2 3 4 5 6
|
limcflflem |
⊢ ( 𝜑 → 𝐿 ∈ ( Fil ‘ 𝐶 ) ) |
87 |
|
fssres |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐶 ⊆ 𝐴 ) → ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ ℂ ) |
88 |
1 21 87
|
sylancl |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ ℂ ) |
89 |
|
isflf |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ 𝐿 ∈ ( Fil ‘ 𝐶 ) ∧ ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ ℂ ) → ( 𝑥 ∈ ( ( 𝐾 fLimf 𝐿 ) ‘ ( 𝐹 ↾ 𝐶 ) ) ↔ ( 𝑥 ∈ ℂ ∧ ∀ 𝑢 ∈ 𝐾 ( 𝑥 ∈ 𝑢 → ∃ 𝑠 ∈ 𝐿 ( ( 𝐹 ↾ 𝐶 ) “ 𝑠 ) ⊆ 𝑢 ) ) ) ) |
90 |
44 86 88 89
|
mp3an2i |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ( 𝐾 fLimf 𝐿 ) ‘ ( 𝐹 ↾ 𝐶 ) ) ↔ ( 𝑥 ∈ ℂ ∧ ∀ 𝑢 ∈ 𝐾 ( 𝑥 ∈ 𝑢 → ∃ 𝑠 ∈ 𝐿 ( ( 𝐹 ↾ 𝐶 ) “ 𝑠 ) ⊆ 𝑢 ) ) ) ) |
91 |
84 85 90
|
3bitr4d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ↔ 𝑥 ∈ ( ( 𝐾 fLimf 𝐿 ) ‘ ( 𝐹 ↾ 𝐶 ) ) ) ) |
92 |
91
|
eqrdv |
⊢ ( 𝜑 → ( 𝐹 limℂ 𝐵 ) = ( ( 𝐾 fLimf 𝐿 ) ‘ ( 𝐹 ↾ 𝐶 ) ) ) |