| Step | Hyp | Ref | Expression | 
						
							| 1 |  | limcflf.f | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ ℂ ) | 
						
							| 2 |  | limcflf.a | ⊢ ( 𝜑  →  𝐴  ⊆  ℂ ) | 
						
							| 3 |  | limcflf.b | ⊢ ( 𝜑  →  𝐵  ∈  ( ( limPt ‘ 𝐾 ) ‘ 𝐴 ) ) | 
						
							| 4 |  | limcflf.k | ⊢ 𝐾  =  ( TopOpen ‘ ℂfld ) | 
						
							| 5 |  | limcflf.c | ⊢ 𝐶  =  ( 𝐴  ∖  { 𝐵 } ) | 
						
							| 6 |  | limcflf.l | ⊢ 𝐿  =  ( ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } )  ↾t  𝐶 ) | 
						
							| 7 | 4 | cnfldtop | ⊢ 𝐾  ∈  Top | 
						
							| 8 | 4 | cnfldtopon | ⊢ 𝐾  ∈  ( TopOn ‘ ℂ ) | 
						
							| 9 | 8 | toponunii | ⊢ ℂ  =  ∪  𝐾 | 
						
							| 10 | 9 | islp | ⊢ ( ( 𝐾  ∈  Top  ∧  𝐴  ⊆  ℂ )  →  ( 𝐵  ∈  ( ( limPt ‘ 𝐾 ) ‘ 𝐴 )  ↔  𝐵  ∈  ( ( cls ‘ 𝐾 ) ‘ ( 𝐴  ∖  { 𝐵 } ) ) ) ) | 
						
							| 11 | 7 2 10 | sylancr | ⊢ ( 𝜑  →  ( 𝐵  ∈  ( ( limPt ‘ 𝐾 ) ‘ 𝐴 )  ↔  𝐵  ∈  ( ( cls ‘ 𝐾 ) ‘ ( 𝐴  ∖  { 𝐵 } ) ) ) ) | 
						
							| 12 | 3 11 | mpbid | ⊢ ( 𝜑  →  𝐵  ∈  ( ( cls ‘ 𝐾 ) ‘ ( 𝐴  ∖  { 𝐵 } ) ) ) | 
						
							| 13 | 5 | fveq2i | ⊢ ( ( cls ‘ 𝐾 ) ‘ 𝐶 )  =  ( ( cls ‘ 𝐾 ) ‘ ( 𝐴  ∖  { 𝐵 } ) ) | 
						
							| 14 | 12 13 | eleqtrrdi | ⊢ ( 𝜑  →  𝐵  ∈  ( ( cls ‘ 𝐾 ) ‘ 𝐶 ) ) | 
						
							| 15 |  | difss | ⊢ ( 𝐴  ∖  { 𝐵 } )  ⊆  𝐴 | 
						
							| 16 | 5 15 | eqsstri | ⊢ 𝐶  ⊆  𝐴 | 
						
							| 17 | 16 2 | sstrid | ⊢ ( 𝜑  →  𝐶  ⊆  ℂ ) | 
						
							| 18 | 9 | lpss | ⊢ ( ( 𝐾  ∈  Top  ∧  𝐴  ⊆  ℂ )  →  ( ( limPt ‘ 𝐾 ) ‘ 𝐴 )  ⊆  ℂ ) | 
						
							| 19 | 7 2 18 | sylancr | ⊢ ( 𝜑  →  ( ( limPt ‘ 𝐾 ) ‘ 𝐴 )  ⊆  ℂ ) | 
						
							| 20 | 19 3 | sseldd | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 21 |  | trnei | ⊢ ( ( 𝐾  ∈  ( TopOn ‘ ℂ )  ∧  𝐶  ⊆  ℂ  ∧  𝐵  ∈  ℂ )  →  ( 𝐵  ∈  ( ( cls ‘ 𝐾 ) ‘ 𝐶 )  ↔  ( ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } )  ↾t  𝐶 )  ∈  ( Fil ‘ 𝐶 ) ) ) | 
						
							| 22 | 8 17 20 21 | mp3an2i | ⊢ ( 𝜑  →  ( 𝐵  ∈  ( ( cls ‘ 𝐾 ) ‘ 𝐶 )  ↔  ( ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } )  ↾t  𝐶 )  ∈  ( Fil ‘ 𝐶 ) ) ) | 
						
							| 23 | 14 22 | mpbid | ⊢ ( 𝜑  →  ( ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } )  ↾t  𝐶 )  ∈  ( Fil ‘ 𝐶 ) ) | 
						
							| 24 | 6 23 | eqeltrid | ⊢ ( 𝜑  →  𝐿  ∈  ( Fil ‘ 𝐶 ) ) |