Step |
Hyp |
Ref |
Expression |
1 |
|
limcflf.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) |
2 |
|
limcflf.a |
⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) |
3 |
|
limcflf.b |
⊢ ( 𝜑 → 𝐵 ∈ ( ( limPt ‘ 𝐾 ) ‘ 𝐴 ) ) |
4 |
|
limcflf.k |
⊢ 𝐾 = ( TopOpen ‘ ℂfld ) |
5 |
|
limcflf.c |
⊢ 𝐶 = ( 𝐴 ∖ { 𝐵 } ) |
6 |
|
limcflf.l |
⊢ 𝐿 = ( ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↾t 𝐶 ) |
7 |
4
|
cnfldtop |
⊢ 𝐾 ∈ Top |
8 |
4
|
cnfldtopon |
⊢ 𝐾 ∈ ( TopOn ‘ ℂ ) |
9 |
8
|
toponunii |
⊢ ℂ = ∪ 𝐾 |
10 |
9
|
islp |
⊢ ( ( 𝐾 ∈ Top ∧ 𝐴 ⊆ ℂ ) → ( 𝐵 ∈ ( ( limPt ‘ 𝐾 ) ‘ 𝐴 ) ↔ 𝐵 ∈ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) ) |
11 |
7 2 10
|
sylancr |
⊢ ( 𝜑 → ( 𝐵 ∈ ( ( limPt ‘ 𝐾 ) ‘ 𝐴 ) ↔ 𝐵 ∈ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) ) |
12 |
3 11
|
mpbid |
⊢ ( 𝜑 → 𝐵 ∈ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) |
13 |
5
|
fveq2i |
⊢ ( ( cls ‘ 𝐾 ) ‘ 𝐶 ) = ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) |
14 |
12 13
|
eleqtrrdi |
⊢ ( 𝜑 → 𝐵 ∈ ( ( cls ‘ 𝐾 ) ‘ 𝐶 ) ) |
15 |
|
difss |
⊢ ( 𝐴 ∖ { 𝐵 } ) ⊆ 𝐴 |
16 |
5 15
|
eqsstri |
⊢ 𝐶 ⊆ 𝐴 |
17 |
16 2
|
sstrid |
⊢ ( 𝜑 → 𝐶 ⊆ ℂ ) |
18 |
9
|
lpss |
⊢ ( ( 𝐾 ∈ Top ∧ 𝐴 ⊆ ℂ ) → ( ( limPt ‘ 𝐾 ) ‘ 𝐴 ) ⊆ ℂ ) |
19 |
7 2 18
|
sylancr |
⊢ ( 𝜑 → ( ( limPt ‘ 𝐾 ) ‘ 𝐴 ) ⊆ ℂ ) |
20 |
19 3
|
sseldd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
21 |
|
trnei |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ 𝐶 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 ∈ ( ( cls ‘ 𝐾 ) ‘ 𝐶 ) ↔ ( ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↾t 𝐶 ) ∈ ( Fil ‘ 𝐶 ) ) ) |
22 |
8 17 20 21
|
mp3an2i |
⊢ ( 𝜑 → ( 𝐵 ∈ ( ( cls ‘ 𝐾 ) ‘ 𝐶 ) ↔ ( ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↾t 𝐶 ) ∈ ( Fil ‘ 𝐶 ) ) ) |
23 |
14 22
|
mpbid |
⊢ ( 𝜑 → ( ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↾t 𝐶 ) ∈ ( Fil ‘ 𝐶 ) ) |
24 |
6 23
|
eqeltrid |
⊢ ( 𝜑 → 𝐿 ∈ ( Fil ‘ 𝐶 ) ) |