Step |
Hyp |
Ref |
Expression |
1 |
|
limcval.j |
⊢ 𝐽 = ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) |
2 |
|
limcval.k |
⊢ 𝐾 = ( TopOpen ‘ ℂfld ) |
3 |
|
df-limc |
⊢ limℂ = ( 𝑓 ∈ ( ℂ ↑pm ℂ ) , 𝑥 ∈ ℂ ↦ { 𝑦 ∣ [ ( TopOpen ‘ ℂfld ) / 𝑗 ] ( 𝑧 ∈ ( dom 𝑓 ∪ { 𝑥 } ) ↦ if ( 𝑧 = 𝑥 , 𝑦 , ( 𝑓 ‘ 𝑧 ) ) ) ∈ ( ( ( 𝑗 ↾t ( dom 𝑓 ∪ { 𝑥 } ) ) CnP 𝑗 ) ‘ 𝑥 ) } ) |
4 |
3
|
a1i |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) → limℂ = ( 𝑓 ∈ ( ℂ ↑pm ℂ ) , 𝑥 ∈ ℂ ↦ { 𝑦 ∣ [ ( TopOpen ‘ ℂfld ) / 𝑗 ] ( 𝑧 ∈ ( dom 𝑓 ∪ { 𝑥 } ) ↦ if ( 𝑧 = 𝑥 , 𝑦 , ( 𝑓 ‘ 𝑧 ) ) ) ∈ ( ( ( 𝑗 ↾t ( dom 𝑓 ∪ { 𝑥 } ) ) CnP 𝑗 ) ‘ 𝑥 ) } ) ) |
5 |
|
fvexd |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑓 = 𝐹 ∧ 𝑥 = 𝐵 ) ) → ( TopOpen ‘ ℂfld ) ∈ V ) |
6 |
|
simplrl |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑓 = 𝐹 ∧ 𝑥 = 𝐵 ) ) ∧ 𝑗 = ( TopOpen ‘ ℂfld ) ) → 𝑓 = 𝐹 ) |
7 |
6
|
dmeqd |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑓 = 𝐹 ∧ 𝑥 = 𝐵 ) ) ∧ 𝑗 = ( TopOpen ‘ ℂfld ) ) → dom 𝑓 = dom 𝐹 ) |
8 |
|
simpll1 |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑓 = 𝐹 ∧ 𝑥 = 𝐵 ) ) ∧ 𝑗 = ( TopOpen ‘ ℂfld ) ) → 𝐹 : 𝐴 ⟶ ℂ ) |
9 |
8
|
fdmd |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑓 = 𝐹 ∧ 𝑥 = 𝐵 ) ) ∧ 𝑗 = ( TopOpen ‘ ℂfld ) ) → dom 𝐹 = 𝐴 ) |
10 |
7 9
|
eqtrd |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑓 = 𝐹 ∧ 𝑥 = 𝐵 ) ) ∧ 𝑗 = ( TopOpen ‘ ℂfld ) ) → dom 𝑓 = 𝐴 ) |
11 |
|
simplrr |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑓 = 𝐹 ∧ 𝑥 = 𝐵 ) ) ∧ 𝑗 = ( TopOpen ‘ ℂfld ) ) → 𝑥 = 𝐵 ) |
12 |
11
|
sneqd |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑓 = 𝐹 ∧ 𝑥 = 𝐵 ) ) ∧ 𝑗 = ( TopOpen ‘ ℂfld ) ) → { 𝑥 } = { 𝐵 } ) |
13 |
10 12
|
uneq12d |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑓 = 𝐹 ∧ 𝑥 = 𝐵 ) ) ∧ 𝑗 = ( TopOpen ‘ ℂfld ) ) → ( dom 𝑓 ∪ { 𝑥 } ) = ( 𝐴 ∪ { 𝐵 } ) ) |
14 |
11
|
eqeq2d |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑓 = 𝐹 ∧ 𝑥 = 𝐵 ) ) ∧ 𝑗 = ( TopOpen ‘ ℂfld ) ) → ( 𝑧 = 𝑥 ↔ 𝑧 = 𝐵 ) ) |
15 |
6
|
fveq1d |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑓 = 𝐹 ∧ 𝑥 = 𝐵 ) ) ∧ 𝑗 = ( TopOpen ‘ ℂfld ) ) → ( 𝑓 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
16 |
14 15
|
ifbieq2d |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑓 = 𝐹 ∧ 𝑥 = 𝐵 ) ) ∧ 𝑗 = ( TopOpen ‘ ℂfld ) ) → if ( 𝑧 = 𝑥 , 𝑦 , ( 𝑓 ‘ 𝑧 ) ) = if ( 𝑧 = 𝐵 , 𝑦 , ( 𝐹 ‘ 𝑧 ) ) ) |
17 |
13 16
|
mpteq12dv |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑓 = 𝐹 ∧ 𝑥 = 𝐵 ) ) ∧ 𝑗 = ( TopOpen ‘ ℂfld ) ) → ( 𝑧 ∈ ( dom 𝑓 ∪ { 𝑥 } ) ↦ if ( 𝑧 = 𝑥 , 𝑦 , ( 𝑓 ‘ 𝑧 ) ) ) = ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑦 , ( 𝐹 ‘ 𝑧 ) ) ) ) |
18 |
|
simpr |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑓 = 𝐹 ∧ 𝑥 = 𝐵 ) ) ∧ 𝑗 = ( TopOpen ‘ ℂfld ) ) → 𝑗 = ( TopOpen ‘ ℂfld ) ) |
19 |
18 2
|
eqtr4di |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑓 = 𝐹 ∧ 𝑥 = 𝐵 ) ) ∧ 𝑗 = ( TopOpen ‘ ℂfld ) ) → 𝑗 = 𝐾 ) |
20 |
19 13
|
oveq12d |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑓 = 𝐹 ∧ 𝑥 = 𝐵 ) ) ∧ 𝑗 = ( TopOpen ‘ ℂfld ) ) → ( 𝑗 ↾t ( dom 𝑓 ∪ { 𝑥 } ) ) = ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ) |
21 |
20 1
|
eqtr4di |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑓 = 𝐹 ∧ 𝑥 = 𝐵 ) ) ∧ 𝑗 = ( TopOpen ‘ ℂfld ) ) → ( 𝑗 ↾t ( dom 𝑓 ∪ { 𝑥 } ) ) = 𝐽 ) |
22 |
21 19
|
oveq12d |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑓 = 𝐹 ∧ 𝑥 = 𝐵 ) ) ∧ 𝑗 = ( TopOpen ‘ ℂfld ) ) → ( ( 𝑗 ↾t ( dom 𝑓 ∪ { 𝑥 } ) ) CnP 𝑗 ) = ( 𝐽 CnP 𝐾 ) ) |
23 |
22 11
|
fveq12d |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑓 = 𝐹 ∧ 𝑥 = 𝐵 ) ) ∧ 𝑗 = ( TopOpen ‘ ℂfld ) ) → ( ( ( 𝑗 ↾t ( dom 𝑓 ∪ { 𝑥 } ) ) CnP 𝑗 ) ‘ 𝑥 ) = ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) |
24 |
17 23
|
eleq12d |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑓 = 𝐹 ∧ 𝑥 = 𝐵 ) ) ∧ 𝑗 = ( TopOpen ‘ ℂfld ) ) → ( ( 𝑧 ∈ ( dom 𝑓 ∪ { 𝑥 } ) ↦ if ( 𝑧 = 𝑥 , 𝑦 , ( 𝑓 ‘ 𝑧 ) ) ) ∈ ( ( ( 𝑗 ↾t ( dom 𝑓 ∪ { 𝑥 } ) ) CnP 𝑗 ) ‘ 𝑥 ) ↔ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑦 , ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) ) |
25 |
5 24
|
sbcied |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑓 = 𝐹 ∧ 𝑥 = 𝐵 ) ) → ( [ ( TopOpen ‘ ℂfld ) / 𝑗 ] ( 𝑧 ∈ ( dom 𝑓 ∪ { 𝑥 } ) ↦ if ( 𝑧 = 𝑥 , 𝑦 , ( 𝑓 ‘ 𝑧 ) ) ) ∈ ( ( ( 𝑗 ↾t ( dom 𝑓 ∪ { 𝑥 } ) ) CnP 𝑗 ) ‘ 𝑥 ) ↔ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑦 , ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) ) |
26 |
25
|
abbidv |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑓 = 𝐹 ∧ 𝑥 = 𝐵 ) ) → { 𝑦 ∣ [ ( TopOpen ‘ ℂfld ) / 𝑗 ] ( 𝑧 ∈ ( dom 𝑓 ∪ { 𝑥 } ) ↦ if ( 𝑧 = 𝑥 , 𝑦 , ( 𝑓 ‘ 𝑧 ) ) ) ∈ ( ( ( 𝑗 ↾t ( dom 𝑓 ∪ { 𝑥 } ) ) CnP 𝑗 ) ‘ 𝑥 ) } = { 𝑦 ∣ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑦 , ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) } ) |
27 |
|
cnex |
⊢ ℂ ∈ V |
28 |
|
elpm2r |
⊢ ( ( ( ℂ ∈ V ∧ ℂ ∈ V ) ∧ ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ) ) → 𝐹 ∈ ( ℂ ↑pm ℂ ) ) |
29 |
27 27 28
|
mpanl12 |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ) → 𝐹 ∈ ( ℂ ↑pm ℂ ) ) |
30 |
29
|
3adant3 |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐹 ∈ ( ℂ ↑pm ℂ ) ) |
31 |
|
simp3 |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐵 ∈ ℂ ) |
32 |
|
eqid |
⊢ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑦 , ( 𝐹 ‘ 𝑧 ) ) ) = ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑦 , ( 𝐹 ‘ 𝑧 ) ) ) |
33 |
1 2 32
|
limcvallem |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑦 , ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) → 𝑦 ∈ ℂ ) ) |
34 |
33
|
abssdv |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) → { 𝑦 ∣ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑦 , ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) } ⊆ ℂ ) |
35 |
27
|
ssex |
⊢ ( { 𝑦 ∣ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑦 , ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) } ⊆ ℂ → { 𝑦 ∣ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑦 , ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) } ∈ V ) |
36 |
34 35
|
syl |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) → { 𝑦 ∣ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑦 , ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) } ∈ V ) |
37 |
4 26 30 31 36
|
ovmpod |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐹 limℂ 𝐵 ) = { 𝑦 ∣ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑦 , ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) } ) |
38 |
37 34
|
eqsstrd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐹 limℂ 𝐵 ) ⊆ ℂ ) |
39 |
37 38
|
jca |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐹 limℂ 𝐵 ) = { 𝑦 ∣ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑦 , ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) } ∧ ( 𝐹 limℂ 𝐵 ) ⊆ ℂ ) ) |