Metamath Proof Explorer


Theorem limciun

Description: A point is a limit of F on the finite union U_ x e. A B ( x ) iff it is the limit of the restriction of F to each B ( x ) . (Contributed by Mario Carneiro, 30-Dec-2016)

Ref Expression
Hypotheses limciun.1 ( 𝜑𝐴 ∈ Fin )
limciun.2 ( 𝜑 → ∀ 𝑥𝐴 𝐵 ⊆ ℂ )
limciun.3 ( 𝜑𝐹 : 𝑥𝐴 𝐵 ⟶ ℂ )
limciun.4 ( 𝜑𝐶 ∈ ℂ )
Assertion limciun ( 𝜑 → ( 𝐹 lim 𝐶 ) = ( ℂ ∩ 𝑥𝐴 ( ( 𝐹𝐵 ) lim 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 limciun.1 ( 𝜑𝐴 ∈ Fin )
2 limciun.2 ( 𝜑 → ∀ 𝑥𝐴 𝐵 ⊆ ℂ )
3 limciun.3 ( 𝜑𝐹 : 𝑥𝐴 𝐵 ⟶ ℂ )
4 limciun.4 ( 𝜑𝐶 ∈ ℂ )
5 limccl ( 𝐹 lim 𝐶 ) ⊆ ℂ
6 limcresi ( 𝐹 lim 𝐶 ) ⊆ ( ( 𝐹𝐵 ) lim 𝐶 )
7 6 rgenw 𝑥𝐴 ( 𝐹 lim 𝐶 ) ⊆ ( ( 𝐹𝐵 ) lim 𝐶 )
8 ssiin ( ( 𝐹 lim 𝐶 ) ⊆ 𝑥𝐴 ( ( 𝐹𝐵 ) lim 𝐶 ) ↔ ∀ 𝑥𝐴 ( 𝐹 lim 𝐶 ) ⊆ ( ( 𝐹𝐵 ) lim 𝐶 ) )
9 7 8 mpbir ( 𝐹 lim 𝐶 ) ⊆ 𝑥𝐴 ( ( 𝐹𝐵 ) lim 𝐶 )
10 5 9 ssini ( 𝐹 lim 𝐶 ) ⊆ ( ℂ ∩ 𝑥𝐴 ( ( 𝐹𝐵 ) lim 𝐶 ) )
11 10 a1i ( 𝜑 → ( 𝐹 lim 𝐶 ) ⊆ ( ℂ ∩ 𝑥𝐴 ( ( 𝐹𝐵 ) lim 𝐶 ) ) )
12 elriin ( 𝑦 ∈ ( ℂ ∩ 𝑥𝐴 ( ( 𝐹𝐵 ) lim 𝐶 ) ) ↔ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥𝐴 𝑦 ∈ ( ( 𝐹𝐵 ) lim 𝐶 ) ) )
13 simprl ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥𝐴 𝑦 ∈ ( ( 𝐹𝐵 ) lim 𝐶 ) ) ) → 𝑦 ∈ ℂ )
14 1 ad2antrr ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥𝐴 𝑦 ∈ ( ( 𝐹𝐵 ) lim 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦𝑢 ) ) → 𝐴 ∈ Fin )
15 simplrr ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥𝐴 𝑦 ∈ ( ( 𝐹𝐵 ) lim 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦𝑢 ) ) → ∀ 𝑥𝐴 𝑦 ∈ ( ( 𝐹𝐵 ) lim 𝐶 ) )
16 nfcv 𝑥 𝐹
17 nfcsb1v 𝑥 𝑎 / 𝑥 𝐵
18 16 17 nfres 𝑥 ( 𝐹 𝑎 / 𝑥 𝐵 )
19 nfcv 𝑥 lim
20 nfcv 𝑥 𝐶
21 18 19 20 nfov 𝑥 ( ( 𝐹 𝑎 / 𝑥 𝐵 ) lim 𝐶 )
22 21 nfcri 𝑥 𝑦 ∈ ( ( 𝐹 𝑎 / 𝑥 𝐵 ) lim 𝐶 )
23 csbeq1a ( 𝑥 = 𝑎𝐵 = 𝑎 / 𝑥 𝐵 )
24 23 reseq2d ( 𝑥 = 𝑎 → ( 𝐹𝐵 ) = ( 𝐹 𝑎 / 𝑥 𝐵 ) )
25 24 oveq1d ( 𝑥 = 𝑎 → ( ( 𝐹𝐵 ) lim 𝐶 ) = ( ( 𝐹 𝑎 / 𝑥 𝐵 ) lim 𝐶 ) )
26 25 eleq2d ( 𝑥 = 𝑎 → ( 𝑦 ∈ ( ( 𝐹𝐵 ) lim 𝐶 ) ↔ 𝑦 ∈ ( ( 𝐹 𝑎 / 𝑥 𝐵 ) lim 𝐶 ) ) )
27 22 26 rspc ( 𝑎𝐴 → ( ∀ 𝑥𝐴 𝑦 ∈ ( ( 𝐹𝐵 ) lim 𝐶 ) → 𝑦 ∈ ( ( 𝐹 𝑎 / 𝑥 𝐵 ) lim 𝐶 ) ) )
28 15 27 mpan9 ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥𝐴 𝑦 ∈ ( ( 𝐹𝐵 ) lim 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦𝑢 ) ) ∧ 𝑎𝐴 ) → 𝑦 ∈ ( ( 𝐹 𝑎 / 𝑥 𝐵 ) lim 𝐶 ) )
29 3 ad2antrr ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥𝐴 𝑦 ∈ ( ( 𝐹𝐵 ) lim 𝐶 ) ) ) ∧ 𝑎𝐴 ) → 𝐹 : 𝑥𝐴 𝐵 ⟶ ℂ )
30 ssiun2 ( 𝑎𝐴 𝑎 / 𝑥 𝐵 𝑎𝐴 𝑎 / 𝑥 𝐵 )
31 nfcv 𝑎 𝐵
32 31 17 23 cbviun 𝑥𝐴 𝐵 = 𝑎𝐴 𝑎 / 𝑥 𝐵
33 30 32 sseqtrrdi ( 𝑎𝐴 𝑎 / 𝑥 𝐵 𝑥𝐴 𝐵 )
34 33 adantl ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥𝐴 𝑦 ∈ ( ( 𝐹𝐵 ) lim 𝐶 ) ) ) ∧ 𝑎𝐴 ) → 𝑎 / 𝑥 𝐵 𝑥𝐴 𝐵 )
35 29 34 fssresd ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥𝐴 𝑦 ∈ ( ( 𝐹𝐵 ) lim 𝐶 ) ) ) ∧ 𝑎𝐴 ) → ( 𝐹 𝑎 / 𝑥 𝐵 ) : 𝑎 / 𝑥 𝐵 ⟶ ℂ )
36 simpr ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥𝐴 𝑦 ∈ ( ( 𝐹𝐵 ) lim 𝐶 ) ) ) ∧ 𝑎𝐴 ) → 𝑎𝐴 )
37 2 ad2antrr ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥𝐴 𝑦 ∈ ( ( 𝐹𝐵 ) lim 𝐶 ) ) ) ∧ 𝑎𝐴 ) → ∀ 𝑥𝐴 𝐵 ⊆ ℂ )
38 nfcv 𝑥
39 17 38 nfss 𝑥 𝑎 / 𝑥 𝐵 ⊆ ℂ
40 23 sseq1d ( 𝑥 = 𝑎 → ( 𝐵 ⊆ ℂ ↔ 𝑎 / 𝑥 𝐵 ⊆ ℂ ) )
41 39 40 rspc ( 𝑎𝐴 → ( ∀ 𝑥𝐴 𝐵 ⊆ ℂ → 𝑎 / 𝑥 𝐵 ⊆ ℂ ) )
42 36 37 41 sylc ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥𝐴 𝑦 ∈ ( ( 𝐹𝐵 ) lim 𝐶 ) ) ) ∧ 𝑎𝐴 ) → 𝑎 / 𝑥 𝐵 ⊆ ℂ )
43 4 ad2antrr ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥𝐴 𝑦 ∈ ( ( 𝐹𝐵 ) lim 𝐶 ) ) ) ∧ 𝑎𝐴 ) → 𝐶 ∈ ℂ )
44 eqid ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld )
45 35 42 43 44 ellimc2 ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥𝐴 𝑦 ∈ ( ( 𝐹𝐵 ) lim 𝐶 ) ) ) ∧ 𝑎𝐴 ) → ( 𝑦 ∈ ( ( 𝐹 𝑎 / 𝑥 𝐵 ) lim 𝐶 ) ↔ ( 𝑦 ∈ ℂ ∧ ∀ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ( 𝑦𝑢 → ∃ 𝑘 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶𝑘 ∧ ( ( 𝐹 𝑎 / 𝑥 𝐵 ) “ ( 𝑘 ∩ ( 𝑎 / 𝑥 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) ) )
46 45 adantlr ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥𝐴 𝑦 ∈ ( ( 𝐹𝐵 ) lim 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦𝑢 ) ) ∧ 𝑎𝐴 ) → ( 𝑦 ∈ ( ( 𝐹 𝑎 / 𝑥 𝐵 ) lim 𝐶 ) ↔ ( 𝑦 ∈ ℂ ∧ ∀ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ( 𝑦𝑢 → ∃ 𝑘 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶𝑘 ∧ ( ( 𝐹 𝑎 / 𝑥 𝐵 ) “ ( 𝑘 ∩ ( 𝑎 / 𝑥 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) ) )
47 28 46 mpbid ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥𝐴 𝑦 ∈ ( ( 𝐹𝐵 ) lim 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦𝑢 ) ) ∧ 𝑎𝐴 ) → ( 𝑦 ∈ ℂ ∧ ∀ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ( 𝑦𝑢 → ∃ 𝑘 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶𝑘 ∧ ( ( 𝐹 𝑎 / 𝑥 𝐵 ) “ ( 𝑘 ∩ ( 𝑎 / 𝑥 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) )
48 47 simprd ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥𝐴 𝑦 ∈ ( ( 𝐹𝐵 ) lim 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦𝑢 ) ) ∧ 𝑎𝐴 ) → ∀ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ( 𝑦𝑢 → ∃ 𝑘 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶𝑘 ∧ ( ( 𝐹 𝑎 / 𝑥 𝐵 ) “ ( 𝑘 ∩ ( 𝑎 / 𝑥 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) )
49 simplrl ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥𝐴 𝑦 ∈ ( ( 𝐹𝐵 ) lim 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦𝑢 ) ) ∧ 𝑎𝐴 ) → 𝑢 ∈ ( TopOpen ‘ ℂfld ) )
50 simplrr ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥𝐴 𝑦 ∈ ( ( 𝐹𝐵 ) lim 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦𝑢 ) ) ∧ 𝑎𝐴 ) → 𝑦𝑢 )
51 rsp ( ∀ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ( 𝑦𝑢 → ∃ 𝑘 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶𝑘 ∧ ( ( 𝐹 𝑎 / 𝑥 𝐵 ) “ ( 𝑘 ∩ ( 𝑎 / 𝑥 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) → ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) → ( 𝑦𝑢 → ∃ 𝑘 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶𝑘 ∧ ( ( 𝐹 𝑎 / 𝑥 𝐵 ) “ ( 𝑘 ∩ ( 𝑎 / 𝑥 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) )
52 48 49 50 51 syl3c ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥𝐴 𝑦 ∈ ( ( 𝐹𝐵 ) lim 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦𝑢 ) ) ∧ 𝑎𝐴 ) → ∃ 𝑘 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶𝑘 ∧ ( ( 𝐹 𝑎 / 𝑥 𝐵 ) “ ( 𝑘 ∩ ( 𝑎 / 𝑥 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) )
53 52 ralrimiva ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥𝐴 𝑦 ∈ ( ( 𝐹𝐵 ) lim 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦𝑢 ) ) → ∀ 𝑎𝐴𝑘 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶𝑘 ∧ ( ( 𝐹 𝑎 / 𝑥 𝐵 ) “ ( 𝑘 ∩ ( 𝑎 / 𝑥 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) )
54 nfv 𝑎𝑘 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶𝑘 ∧ ( ( 𝐹𝐵 ) “ ( 𝑘 ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 )
55 nfcv 𝑥 ( TopOpen ‘ ℂfld )
56 nfv 𝑥 𝐶𝑘
57 nfcv 𝑥 𝑘
58 nfcv 𝑥 { 𝐶 }
59 17 58 nfdif 𝑥 ( 𝑎 / 𝑥 𝐵 ∖ { 𝐶 } )
60 57 59 nfin 𝑥 ( 𝑘 ∩ ( 𝑎 / 𝑥 𝐵 ∖ { 𝐶 } ) )
61 18 60 nfima 𝑥 ( ( 𝐹 𝑎 / 𝑥 𝐵 ) “ ( 𝑘 ∩ ( 𝑎 / 𝑥 𝐵 ∖ { 𝐶 } ) ) )
62 nfcv 𝑥 𝑢
63 61 62 nfss 𝑥 ( ( 𝐹 𝑎 / 𝑥 𝐵 ) “ ( 𝑘 ∩ ( 𝑎 / 𝑥 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢
64 56 63 nfan 𝑥 ( 𝐶𝑘 ∧ ( ( 𝐹 𝑎 / 𝑥 𝐵 ) “ ( 𝑘 ∩ ( 𝑎 / 𝑥 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 )
65 55 64 nfrex 𝑥𝑘 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶𝑘 ∧ ( ( 𝐹 𝑎 / 𝑥 𝐵 ) “ ( 𝑘 ∩ ( 𝑎 / 𝑥 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 )
66 23 difeq1d ( 𝑥 = 𝑎 → ( 𝐵 ∖ { 𝐶 } ) = ( 𝑎 / 𝑥 𝐵 ∖ { 𝐶 } ) )
67 66 ineq2d ( 𝑥 = 𝑎 → ( 𝑘 ∩ ( 𝐵 ∖ { 𝐶 } ) ) = ( 𝑘 ∩ ( 𝑎 / 𝑥 𝐵 ∖ { 𝐶 } ) ) )
68 24 67 imaeq12d ( 𝑥 = 𝑎 → ( ( 𝐹𝐵 ) “ ( 𝑘 ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) = ( ( 𝐹 𝑎 / 𝑥 𝐵 ) “ ( 𝑘 ∩ ( 𝑎 / 𝑥 𝐵 ∖ { 𝐶 } ) ) ) )
69 68 sseq1d ( 𝑥 = 𝑎 → ( ( ( 𝐹𝐵 ) “ ( 𝑘 ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ↔ ( ( 𝐹 𝑎 / 𝑥 𝐵 ) “ ( 𝑘 ∩ ( 𝑎 / 𝑥 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) )
70 69 anbi2d ( 𝑥 = 𝑎 → ( ( 𝐶𝑘 ∧ ( ( 𝐹𝐵 ) “ ( 𝑘 ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ↔ ( 𝐶𝑘 ∧ ( ( 𝐹 𝑎 / 𝑥 𝐵 ) “ ( 𝑘 ∩ ( 𝑎 / 𝑥 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) )
71 70 rexbidv ( 𝑥 = 𝑎 → ( ∃ 𝑘 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶𝑘 ∧ ( ( 𝐹𝐵 ) “ ( 𝑘 ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ↔ ∃ 𝑘 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶𝑘 ∧ ( ( 𝐹 𝑎 / 𝑥 𝐵 ) “ ( 𝑘 ∩ ( 𝑎 / 𝑥 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) )
72 54 65 71 cbvralw ( ∀ 𝑥𝐴𝑘 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶𝑘 ∧ ( ( 𝐹𝐵 ) “ ( 𝑘 ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ↔ ∀ 𝑎𝐴𝑘 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶𝑘 ∧ ( ( 𝐹 𝑎 / 𝑥 𝐵 ) “ ( 𝑘 ∩ ( 𝑎 / 𝑥 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) )
73 53 72 sylibr ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥𝐴 𝑦 ∈ ( ( 𝐹𝐵 ) lim 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦𝑢 ) ) → ∀ 𝑥𝐴𝑘 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶𝑘 ∧ ( ( 𝐹𝐵 ) “ ( 𝑘 ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) )
74 eleq2 ( 𝑘 = ( 𝑔𝑥 ) → ( 𝐶𝑘𝐶 ∈ ( 𝑔𝑥 ) ) )
75 ineq1 ( 𝑘 = ( 𝑔𝑥 ) → ( 𝑘 ∩ ( 𝐵 ∖ { 𝐶 } ) ) = ( ( 𝑔𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) )
76 75 imaeq2d ( 𝑘 = ( 𝑔𝑥 ) → ( ( 𝐹𝐵 ) “ ( 𝑘 ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) = ( ( 𝐹𝐵 ) “ ( ( 𝑔𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) )
77 76 sseq1d ( 𝑘 = ( 𝑔𝑥 ) → ( ( ( 𝐹𝐵 ) “ ( 𝑘 ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ↔ ( ( 𝐹𝐵 ) “ ( ( 𝑔𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) )
78 74 77 anbi12d ( 𝑘 = ( 𝑔𝑥 ) → ( ( 𝐶𝑘 ∧ ( ( 𝐹𝐵 ) “ ( 𝑘 ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ↔ ( 𝐶 ∈ ( 𝑔𝑥 ) ∧ ( ( 𝐹𝐵 ) “ ( ( 𝑔𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) )
79 78 ac6sfi ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥𝐴𝑘 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶𝑘 ∧ ( ( 𝐹𝐵 ) “ ( 𝑘 ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) → ∃ 𝑔 ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ ∀ 𝑥𝐴 ( 𝐶 ∈ ( 𝑔𝑥 ) ∧ ( ( 𝐹𝐵 ) “ ( ( 𝑔𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) )
80 14 73 79 syl2anc ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥𝐴 𝑦 ∈ ( ( 𝐹𝐵 ) lim 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦𝑢 ) ) → ∃ 𝑔 ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ ∀ 𝑥𝐴 ( 𝐶 ∈ ( 𝑔𝑥 ) ∧ ( ( 𝐹𝐵 ) “ ( ( 𝑔𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) )
81 44 cnfldtop ( TopOpen ‘ ℂfld ) ∈ Top
82 frn ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) → ran 𝑔 ⊆ ( TopOpen ‘ ℂfld ) )
83 82 ad2antrl ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥𝐴 𝑦 ∈ ( ( 𝐹𝐵 ) lim 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦𝑢 ) ) ∧ ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ ∀ 𝑥𝐴 ( 𝐶 ∈ ( 𝑔𝑥 ) ∧ ( ( 𝐹𝐵 ) “ ( ( 𝑔𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) → ran 𝑔 ⊆ ( TopOpen ‘ ℂfld ) )
84 14 adantr ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥𝐴 𝑦 ∈ ( ( 𝐹𝐵 ) lim 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦𝑢 ) ) ∧ ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ ∀ 𝑥𝐴 ( 𝐶 ∈ ( 𝑔𝑥 ) ∧ ( ( 𝐹𝐵 ) “ ( ( 𝑔𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) → 𝐴 ∈ Fin )
85 ffn ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) → 𝑔 Fn 𝐴 )
86 85 ad2antrl ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥𝐴 𝑦 ∈ ( ( 𝐹𝐵 ) lim 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦𝑢 ) ) ∧ ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ ∀ 𝑥𝐴 ( 𝐶 ∈ ( 𝑔𝑥 ) ∧ ( ( 𝐹𝐵 ) “ ( ( 𝑔𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) → 𝑔 Fn 𝐴 )
87 dffn4 ( 𝑔 Fn 𝐴𝑔 : 𝐴onto→ ran 𝑔 )
88 86 87 sylib ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥𝐴 𝑦 ∈ ( ( 𝐹𝐵 ) lim 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦𝑢 ) ) ∧ ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ ∀ 𝑥𝐴 ( 𝐶 ∈ ( 𝑔𝑥 ) ∧ ( ( 𝐹𝐵 ) “ ( ( 𝑔𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) → 𝑔 : 𝐴onto→ ran 𝑔 )
89 fofi ( ( 𝐴 ∈ Fin ∧ 𝑔 : 𝐴onto→ ran 𝑔 ) → ran 𝑔 ∈ Fin )
90 84 88 89 syl2anc ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥𝐴 𝑦 ∈ ( ( 𝐹𝐵 ) lim 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦𝑢 ) ) ∧ ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ ∀ 𝑥𝐴 ( 𝐶 ∈ ( 𝑔𝑥 ) ∧ ( ( 𝐹𝐵 ) “ ( ( 𝑔𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) → ran 𝑔 ∈ Fin )
91 unicntop ℂ = ( TopOpen ‘ ℂfld )
92 91 rintopn ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ran 𝑔 ⊆ ( TopOpen ‘ ℂfld ) ∧ ran 𝑔 ∈ Fin ) → ( ℂ ∩ ran 𝑔 ) ∈ ( TopOpen ‘ ℂfld ) )
93 81 83 90 92 mp3an2i ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥𝐴 𝑦 ∈ ( ( 𝐹𝐵 ) lim 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦𝑢 ) ) ∧ ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ ∀ 𝑥𝐴 ( 𝐶 ∈ ( 𝑔𝑥 ) ∧ ( ( 𝐹𝐵 ) “ ( ( 𝑔𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) → ( ℂ ∩ ran 𝑔 ) ∈ ( TopOpen ‘ ℂfld ) )
94 4 adantr ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥𝐴 𝑦 ∈ ( ( 𝐹𝐵 ) lim 𝐶 ) ) ) → 𝐶 ∈ ℂ )
95 94 ad2antrr ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥𝐴 𝑦 ∈ ( ( 𝐹𝐵 ) lim 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦𝑢 ) ) ∧ ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ ∀ 𝑥𝐴 ( 𝐶 ∈ ( 𝑔𝑥 ) ∧ ( ( 𝐹𝐵 ) “ ( ( 𝑔𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) → 𝐶 ∈ ℂ )
96 simpl ( ( 𝐶 ∈ ( 𝑔𝑥 ) ∧ ( ( 𝐹𝐵 ) “ ( ( 𝑔𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) → 𝐶 ∈ ( 𝑔𝑥 ) )
97 96 ralimi ( ∀ 𝑥𝐴 ( 𝐶 ∈ ( 𝑔𝑥 ) ∧ ( ( 𝐹𝐵 ) “ ( ( 𝑔𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) → ∀ 𝑥𝐴 𝐶 ∈ ( 𝑔𝑥 ) )
98 97 ad2antll ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥𝐴 𝑦 ∈ ( ( 𝐹𝐵 ) lim 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦𝑢 ) ) ∧ ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ ∀ 𝑥𝐴 ( 𝐶 ∈ ( 𝑔𝑥 ) ∧ ( ( 𝐹𝐵 ) “ ( ( 𝑔𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) → ∀ 𝑥𝐴 𝐶 ∈ ( 𝑔𝑥 ) )
99 eleq2 ( 𝑧 = ( 𝑔𝑥 ) → ( 𝐶𝑧𝐶 ∈ ( 𝑔𝑥 ) ) )
100 99 ralrn ( 𝑔 Fn 𝐴 → ( ∀ 𝑧 ∈ ran 𝑔 𝐶𝑧 ↔ ∀ 𝑥𝐴 𝐶 ∈ ( 𝑔𝑥 ) ) )
101 86 100 syl ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥𝐴 𝑦 ∈ ( ( 𝐹𝐵 ) lim 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦𝑢 ) ) ∧ ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ ∀ 𝑥𝐴 ( 𝐶 ∈ ( 𝑔𝑥 ) ∧ ( ( 𝐹𝐵 ) “ ( ( 𝑔𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) → ( ∀ 𝑧 ∈ ran 𝑔 𝐶𝑧 ↔ ∀ 𝑥𝐴 𝐶 ∈ ( 𝑔𝑥 ) ) )
102 98 101 mpbird ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥𝐴 𝑦 ∈ ( ( 𝐹𝐵 ) lim 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦𝑢 ) ) ∧ ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ ∀ 𝑥𝐴 ( 𝐶 ∈ ( 𝑔𝑥 ) ∧ ( ( 𝐹𝐵 ) “ ( ( 𝑔𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) → ∀ 𝑧 ∈ ran 𝑔 𝐶𝑧 )
103 elrint ( 𝐶 ∈ ( ℂ ∩ ran 𝑔 ) ↔ ( 𝐶 ∈ ℂ ∧ ∀ 𝑧 ∈ ran 𝑔 𝐶𝑧 ) )
104 95 102 103 sylanbrc ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥𝐴 𝑦 ∈ ( ( 𝐹𝐵 ) lim 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦𝑢 ) ) ∧ ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ ∀ 𝑥𝐴 ( 𝐶 ∈ ( 𝑔𝑥 ) ∧ ( ( 𝐹𝐵 ) “ ( ( 𝑔𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) → 𝐶 ∈ ( ℂ ∩ ran 𝑔 ) )
105 indifcom ( ( ℂ ∩ ran 𝑔 ) ∩ ( 𝑥𝐴 𝐵 ∖ { 𝐶 } ) ) = ( 𝑥𝐴 𝐵 ∩ ( ( ℂ ∩ ran 𝑔 ) ∖ { 𝐶 } ) )
106 iunin1 𝑥𝐴 ( 𝐵 ∩ ( ( ℂ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) = ( 𝑥𝐴 𝐵 ∩ ( ( ℂ ∩ ran 𝑔 ) ∖ { 𝐶 } ) )
107 105 106 eqtr4i ( ( ℂ ∩ ran 𝑔 ) ∩ ( 𝑥𝐴 𝐵 ∖ { 𝐶 } ) ) = 𝑥𝐴 ( 𝐵 ∩ ( ( ℂ ∩ ran 𝑔 ) ∖ { 𝐶 } ) )
108 107 imaeq2i ( 𝐹 “ ( ( ℂ ∩ ran 𝑔 ) ∩ ( 𝑥𝐴 𝐵 ∖ { 𝐶 } ) ) ) = ( 𝐹 𝑥𝐴 ( 𝐵 ∩ ( ( ℂ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) )
109 imaiun ( 𝐹 𝑥𝐴 ( 𝐵 ∩ ( ( ℂ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) ) = 𝑥𝐴 ( 𝐹 “ ( 𝐵 ∩ ( ( ℂ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) )
110 108 109 eqtri ( 𝐹 “ ( ( ℂ ∩ ran 𝑔 ) ∩ ( 𝑥𝐴 𝐵 ∖ { 𝐶 } ) ) ) = 𝑥𝐴 ( 𝐹 “ ( 𝐵 ∩ ( ( ℂ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) )
111 inss2 ( ℂ ∩ ran 𝑔 ) ⊆ ran 𝑔
112 fnfvelrn ( ( 𝑔 Fn 𝐴𝑥𝐴 ) → ( 𝑔𝑥 ) ∈ ran 𝑔 )
113 85 112 sylan ( ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ 𝑥𝐴 ) → ( 𝑔𝑥 ) ∈ ran 𝑔 )
114 intss1 ( ( 𝑔𝑥 ) ∈ ran 𝑔 ran 𝑔 ⊆ ( 𝑔𝑥 ) )
115 113 114 syl ( ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ 𝑥𝐴 ) → ran 𝑔 ⊆ ( 𝑔𝑥 ) )
116 111 115 sstrid ( ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ 𝑥𝐴 ) → ( ℂ ∩ ran 𝑔 ) ⊆ ( 𝑔𝑥 ) )
117 116 ssdifd ( ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ 𝑥𝐴 ) → ( ( ℂ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ⊆ ( ( 𝑔𝑥 ) ∖ { 𝐶 } ) )
118 sslin ( ( ( ℂ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ⊆ ( ( 𝑔𝑥 ) ∖ { 𝐶 } ) → ( 𝐵 ∩ ( ( ℂ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) ⊆ ( 𝐵 ∩ ( ( 𝑔𝑥 ) ∖ { 𝐶 } ) ) )
119 imass2 ( ( 𝐵 ∩ ( ( ℂ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) ⊆ ( 𝐵 ∩ ( ( 𝑔𝑥 ) ∖ { 𝐶 } ) ) → ( 𝐹 “ ( 𝐵 ∩ ( ( ℂ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) ) ⊆ ( 𝐹 “ ( 𝐵 ∩ ( ( 𝑔𝑥 ) ∖ { 𝐶 } ) ) ) )
120 117 118 119 3syl ( ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ 𝑥𝐴 ) → ( 𝐹 “ ( 𝐵 ∩ ( ( ℂ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) ) ⊆ ( 𝐹 “ ( 𝐵 ∩ ( ( 𝑔𝑥 ) ∖ { 𝐶 } ) ) ) )
121 indifcom ( ( 𝑔𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) = ( 𝐵 ∩ ( ( 𝑔𝑥 ) ∖ { 𝐶 } ) )
122 121 imaeq2i ( ( 𝐹𝐵 ) “ ( ( 𝑔𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) = ( ( 𝐹𝐵 ) “ ( 𝐵 ∩ ( ( 𝑔𝑥 ) ∖ { 𝐶 } ) ) )
123 inss1 ( 𝐵 ∩ ( ( 𝑔𝑥 ) ∖ { 𝐶 } ) ) ⊆ 𝐵
124 resima2 ( ( 𝐵 ∩ ( ( 𝑔𝑥 ) ∖ { 𝐶 } ) ) ⊆ 𝐵 → ( ( 𝐹𝐵 ) “ ( 𝐵 ∩ ( ( 𝑔𝑥 ) ∖ { 𝐶 } ) ) ) = ( 𝐹 “ ( 𝐵 ∩ ( ( 𝑔𝑥 ) ∖ { 𝐶 } ) ) ) )
125 123 124 ax-mp ( ( 𝐹𝐵 ) “ ( 𝐵 ∩ ( ( 𝑔𝑥 ) ∖ { 𝐶 } ) ) ) = ( 𝐹 “ ( 𝐵 ∩ ( ( 𝑔𝑥 ) ∖ { 𝐶 } ) ) )
126 122 125 eqtri ( ( 𝐹𝐵 ) “ ( ( 𝑔𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) = ( 𝐹 “ ( 𝐵 ∩ ( ( 𝑔𝑥 ) ∖ { 𝐶 } ) ) )
127 120 126 sseqtrrdi ( ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ 𝑥𝐴 ) → ( 𝐹 “ ( 𝐵 ∩ ( ( ℂ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) ) ⊆ ( ( 𝐹𝐵 ) “ ( ( 𝑔𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) )
128 sstr2 ( ( 𝐹 “ ( 𝐵 ∩ ( ( ℂ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) ) ⊆ ( ( 𝐹𝐵 ) “ ( ( 𝑔𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) → ( ( ( 𝐹𝐵 ) “ ( ( 𝑔𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 → ( 𝐹 “ ( 𝐵 ∩ ( ( ℂ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) )
129 127 128 syl ( ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ 𝑥𝐴 ) → ( ( ( 𝐹𝐵 ) “ ( ( 𝑔𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 → ( 𝐹 “ ( 𝐵 ∩ ( ( ℂ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) )
130 129 adantld ( ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ 𝑥𝐴 ) → ( ( 𝐶 ∈ ( 𝑔𝑥 ) ∧ ( ( 𝐹𝐵 ) “ ( ( 𝑔𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) → ( 𝐹 “ ( 𝐵 ∩ ( ( ℂ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) )
131 130 ralimdva ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) → ( ∀ 𝑥𝐴 ( 𝐶 ∈ ( 𝑔𝑥 ) ∧ ( ( 𝐹𝐵 ) “ ( ( 𝑔𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) → ∀ 𝑥𝐴 ( 𝐹 “ ( 𝐵 ∩ ( ( ℂ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) )
132 131 imp ( ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ ∀ 𝑥𝐴 ( 𝐶 ∈ ( 𝑔𝑥 ) ∧ ( ( 𝐹𝐵 ) “ ( ( 𝑔𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) → ∀ 𝑥𝐴 ( 𝐹 “ ( 𝐵 ∩ ( ( ℂ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) ) ⊆ 𝑢 )
133 132 adantl ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥𝐴 𝑦 ∈ ( ( 𝐹𝐵 ) lim 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦𝑢 ) ) ∧ ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ ∀ 𝑥𝐴 ( 𝐶 ∈ ( 𝑔𝑥 ) ∧ ( ( 𝐹𝐵 ) “ ( ( 𝑔𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) → ∀ 𝑥𝐴 ( 𝐹 “ ( 𝐵 ∩ ( ( ℂ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) ) ⊆ 𝑢 )
134 iunss ( 𝑥𝐴 ( 𝐹 “ ( 𝐵 ∩ ( ( ℂ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ↔ ∀ 𝑥𝐴 ( 𝐹 “ ( 𝐵 ∩ ( ( ℂ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) ) ⊆ 𝑢 )
135 133 134 sylibr ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥𝐴 𝑦 ∈ ( ( 𝐹𝐵 ) lim 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦𝑢 ) ) ∧ ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ ∀ 𝑥𝐴 ( 𝐶 ∈ ( 𝑔𝑥 ) ∧ ( ( 𝐹𝐵 ) “ ( ( 𝑔𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) → 𝑥𝐴 ( 𝐹 “ ( 𝐵 ∩ ( ( ℂ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) ) ⊆ 𝑢 )
136 110 135 eqsstrid ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥𝐴 𝑦 ∈ ( ( 𝐹𝐵 ) lim 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦𝑢 ) ) ∧ ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ ∀ 𝑥𝐴 ( 𝐶 ∈ ( 𝑔𝑥 ) ∧ ( ( 𝐹𝐵 ) “ ( ( 𝑔𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) → ( 𝐹 “ ( ( ℂ ∩ ran 𝑔 ) ∩ ( 𝑥𝐴 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 )
137 eleq2 ( 𝑣 = ( ℂ ∩ ran 𝑔 ) → ( 𝐶𝑣𝐶 ∈ ( ℂ ∩ ran 𝑔 ) ) )
138 ineq1 ( 𝑣 = ( ℂ ∩ ran 𝑔 ) → ( 𝑣 ∩ ( 𝑥𝐴 𝐵 ∖ { 𝐶 } ) ) = ( ( ℂ ∩ ran 𝑔 ) ∩ ( 𝑥𝐴 𝐵 ∖ { 𝐶 } ) ) )
139 138 imaeq2d ( 𝑣 = ( ℂ ∩ ran 𝑔 ) → ( 𝐹 “ ( 𝑣 ∩ ( 𝑥𝐴 𝐵 ∖ { 𝐶 } ) ) ) = ( 𝐹 “ ( ( ℂ ∩ ran 𝑔 ) ∩ ( 𝑥𝐴 𝐵 ∖ { 𝐶 } ) ) ) )
140 139 sseq1d ( 𝑣 = ( ℂ ∩ ran 𝑔 ) → ( ( 𝐹 “ ( 𝑣 ∩ ( 𝑥𝐴 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ↔ ( 𝐹 “ ( ( ℂ ∩ ran 𝑔 ) ∩ ( 𝑥𝐴 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) )
141 137 140 anbi12d ( 𝑣 = ( ℂ ∩ ran 𝑔 ) → ( ( 𝐶𝑣 ∧ ( 𝐹 “ ( 𝑣 ∩ ( 𝑥𝐴 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ↔ ( 𝐶 ∈ ( ℂ ∩ ran 𝑔 ) ∧ ( 𝐹 “ ( ( ℂ ∩ ran 𝑔 ) ∩ ( 𝑥𝐴 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) )
142 141 rspcev ( ( ( ℂ ∩ ran 𝑔 ) ∈ ( TopOpen ‘ ℂfld ) ∧ ( 𝐶 ∈ ( ℂ ∩ ran 𝑔 ) ∧ ( 𝐹 “ ( ( ℂ ∩ ran 𝑔 ) ∩ ( 𝑥𝐴 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) → ∃ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶𝑣 ∧ ( 𝐹 “ ( 𝑣 ∩ ( 𝑥𝐴 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) )
143 93 104 136 142 syl12anc ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥𝐴 𝑦 ∈ ( ( 𝐹𝐵 ) lim 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦𝑢 ) ) ∧ ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ ∀ 𝑥𝐴 ( 𝐶 ∈ ( 𝑔𝑥 ) ∧ ( ( 𝐹𝐵 ) “ ( ( 𝑔𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) → ∃ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶𝑣 ∧ ( 𝐹 “ ( 𝑣 ∩ ( 𝑥𝐴 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) )
144 80 143 exlimddv ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥𝐴 𝑦 ∈ ( ( 𝐹𝐵 ) lim 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦𝑢 ) ) → ∃ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶𝑣 ∧ ( 𝐹 “ ( 𝑣 ∩ ( 𝑥𝐴 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) )
145 144 expr ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥𝐴 𝑦 ∈ ( ( 𝐹𝐵 ) lim 𝐶 ) ) ) ∧ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ) → ( 𝑦𝑢 → ∃ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶𝑣 ∧ ( 𝐹 “ ( 𝑣 ∩ ( 𝑥𝐴 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) )
146 145 ralrimiva ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥𝐴 𝑦 ∈ ( ( 𝐹𝐵 ) lim 𝐶 ) ) ) → ∀ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ( 𝑦𝑢 → ∃ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶𝑣 ∧ ( 𝐹 “ ( 𝑣 ∩ ( 𝑥𝐴 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) )
147 3 adantr ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥𝐴 𝑦 ∈ ( ( 𝐹𝐵 ) lim 𝐶 ) ) ) → 𝐹 : 𝑥𝐴 𝐵 ⟶ ℂ )
148 iunss ( 𝑥𝐴 𝐵 ⊆ ℂ ↔ ∀ 𝑥𝐴 𝐵 ⊆ ℂ )
149 2 148 sylibr ( 𝜑 𝑥𝐴 𝐵 ⊆ ℂ )
150 149 adantr ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥𝐴 𝑦 ∈ ( ( 𝐹𝐵 ) lim 𝐶 ) ) ) → 𝑥𝐴 𝐵 ⊆ ℂ )
151 147 150 94 44 ellimc2 ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥𝐴 𝑦 ∈ ( ( 𝐹𝐵 ) lim 𝐶 ) ) ) → ( 𝑦 ∈ ( 𝐹 lim 𝐶 ) ↔ ( 𝑦 ∈ ℂ ∧ ∀ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ( 𝑦𝑢 → ∃ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶𝑣 ∧ ( 𝐹 “ ( 𝑣 ∩ ( 𝑥𝐴 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) ) )
152 13 146 151 mpbir2and ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥𝐴 𝑦 ∈ ( ( 𝐹𝐵 ) lim 𝐶 ) ) ) → 𝑦 ∈ ( 𝐹 lim 𝐶 ) )
153 152 ex ( 𝜑 → ( ( 𝑦 ∈ ℂ ∧ ∀ 𝑥𝐴 𝑦 ∈ ( ( 𝐹𝐵 ) lim 𝐶 ) ) → 𝑦 ∈ ( 𝐹 lim 𝐶 ) ) )
154 12 153 syl5bi ( 𝜑 → ( 𝑦 ∈ ( ℂ ∩ 𝑥𝐴 ( ( 𝐹𝐵 ) lim 𝐶 ) ) → 𝑦 ∈ ( 𝐹 lim 𝐶 ) ) )
155 154 ssrdv ( 𝜑 → ( ℂ ∩ 𝑥𝐴 ( ( 𝐹𝐵 ) lim 𝐶 ) ) ⊆ ( 𝐹 lim 𝐶 ) )
156 11 155 eqssd ( 𝜑 → ( 𝐹 lim 𝐶 ) = ( ℂ ∩ 𝑥𝐴 ( ( 𝐹𝐵 ) lim 𝐶 ) ) )