Step |
Hyp |
Ref |
Expression |
1 |
|
limciun.1 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
2 |
|
limciun.2 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ℂ ) |
3 |
|
limciun.3 |
⊢ ( 𝜑 → 𝐹 : ∪ 𝑥 ∈ 𝐴 𝐵 ⟶ ℂ ) |
4 |
|
limciun.4 |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
5 |
|
limccl |
⊢ ( 𝐹 limℂ 𝐶 ) ⊆ ℂ |
6 |
|
limcresi |
⊢ ( 𝐹 limℂ 𝐶 ) ⊆ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) |
7 |
6
|
rgenw |
⊢ ∀ 𝑥 ∈ 𝐴 ( 𝐹 limℂ 𝐶 ) ⊆ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) |
8 |
|
ssiin |
⊢ ( ( 𝐹 limℂ 𝐶 ) ⊆ ∩ 𝑥 ∈ 𝐴 ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐹 limℂ 𝐶 ) ⊆ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) |
9 |
7 8
|
mpbir |
⊢ ( 𝐹 limℂ 𝐶 ) ⊆ ∩ 𝑥 ∈ 𝐴 ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) |
10 |
5 9
|
ssini |
⊢ ( 𝐹 limℂ 𝐶 ) ⊆ ( ℂ ∩ ∩ 𝑥 ∈ 𝐴 ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) |
11 |
10
|
a1i |
⊢ ( 𝜑 → ( 𝐹 limℂ 𝐶 ) ⊆ ( ℂ ∩ ∩ 𝑥 ∈ 𝐴 ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) |
12 |
|
elriin |
⊢ ( 𝑦 ∈ ( ℂ ∩ ∩ 𝑥 ∈ 𝐴 ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ↔ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) |
13 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) → 𝑦 ∈ ℂ ) |
14 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦 ∈ 𝑢 ) ) → 𝐴 ∈ Fin ) |
15 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦 ∈ 𝑢 ) ) → ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) |
16 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐹 |
17 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 |
18 |
16 17
|
nfres |
⊢ Ⅎ 𝑥 ( 𝐹 ↾ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) |
19 |
|
nfcv |
⊢ Ⅎ 𝑥 limℂ |
20 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐶 |
21 |
18 19 20
|
nfov |
⊢ Ⅎ 𝑥 ( ( 𝐹 ↾ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) limℂ 𝐶 ) |
22 |
21
|
nfcri |
⊢ Ⅎ 𝑥 𝑦 ∈ ( ( 𝐹 ↾ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) limℂ 𝐶 ) |
23 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑎 → 𝐵 = ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) |
24 |
23
|
reseq2d |
⊢ ( 𝑥 = 𝑎 → ( 𝐹 ↾ 𝐵 ) = ( 𝐹 ↾ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) ) |
25 |
24
|
oveq1d |
⊢ ( 𝑥 = 𝑎 → ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) = ( ( 𝐹 ↾ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) limℂ 𝐶 ) ) |
26 |
25
|
eleq2d |
⊢ ( 𝑥 = 𝑎 → ( 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ↔ 𝑦 ∈ ( ( 𝐹 ↾ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) limℂ 𝐶 ) ) ) |
27 |
22 26
|
rspc |
⊢ ( 𝑎 ∈ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) → 𝑦 ∈ ( ( 𝐹 ↾ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) limℂ 𝐶 ) ) ) |
28 |
15 27
|
mpan9 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦 ∈ 𝑢 ) ) ∧ 𝑎 ∈ 𝐴 ) → 𝑦 ∈ ( ( 𝐹 ↾ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) limℂ 𝐶 ) ) |
29 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → 𝐹 : ∪ 𝑥 ∈ 𝐴 𝐵 ⟶ ℂ ) |
30 |
|
ssiun2 |
⊢ ( 𝑎 ∈ 𝐴 → ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ⊆ ∪ 𝑎 ∈ 𝐴 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) |
31 |
|
nfcv |
⊢ Ⅎ 𝑎 𝐵 |
32 |
31 17 23
|
cbviun |
⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑎 ∈ 𝐴 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 |
33 |
30 32
|
sseqtrrdi |
⊢ ( 𝑎 ∈ 𝐴 → ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
34 |
33
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
35 |
29 34
|
fssresd |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝐹 ↾ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) : ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ⟶ ℂ ) |
36 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → 𝑎 ∈ 𝐴 ) |
37 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ℂ ) |
38 |
|
nfcv |
⊢ Ⅎ 𝑥 ℂ |
39 |
17 38
|
nfss |
⊢ Ⅎ 𝑥 ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ⊆ ℂ |
40 |
23
|
sseq1d |
⊢ ( 𝑥 = 𝑎 → ( 𝐵 ⊆ ℂ ↔ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ⊆ ℂ ) ) |
41 |
39 40
|
rspc |
⊢ ( 𝑎 ∈ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ℂ → ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ⊆ ℂ ) ) |
42 |
36 37 41
|
sylc |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ⊆ ℂ ) |
43 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
44 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
45 |
35 42 43 44
|
ellimc2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝑦 ∈ ( ( 𝐹 ↾ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) limℂ 𝐶 ) ↔ ( 𝑦 ∈ ℂ ∧ ∀ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ( 𝑦 ∈ 𝑢 → ∃ 𝑘 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶 ∈ 𝑘 ∧ ( ( 𝐹 ↾ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) “ ( 𝑘 ∩ ( ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) ) ) |
46 |
45
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦 ∈ 𝑢 ) ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝑦 ∈ ( ( 𝐹 ↾ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) limℂ 𝐶 ) ↔ ( 𝑦 ∈ ℂ ∧ ∀ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ( 𝑦 ∈ 𝑢 → ∃ 𝑘 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶 ∈ 𝑘 ∧ ( ( 𝐹 ↾ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) “ ( 𝑘 ∩ ( ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) ) ) |
47 |
28 46
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦 ∈ 𝑢 ) ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝑦 ∈ ℂ ∧ ∀ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ( 𝑦 ∈ 𝑢 → ∃ 𝑘 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶 ∈ 𝑘 ∧ ( ( 𝐹 ↾ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) “ ( 𝑘 ∩ ( ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) ) |
48 |
47
|
simprd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦 ∈ 𝑢 ) ) ∧ 𝑎 ∈ 𝐴 ) → ∀ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ( 𝑦 ∈ 𝑢 → ∃ 𝑘 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶 ∈ 𝑘 ∧ ( ( 𝐹 ↾ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) “ ( 𝑘 ∩ ( ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) |
49 |
|
simplrl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦 ∈ 𝑢 ) ) ∧ 𝑎 ∈ 𝐴 ) → 𝑢 ∈ ( TopOpen ‘ ℂfld ) ) |
50 |
|
simplrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦 ∈ 𝑢 ) ) ∧ 𝑎 ∈ 𝐴 ) → 𝑦 ∈ 𝑢 ) |
51 |
|
rsp |
⊢ ( ∀ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ( 𝑦 ∈ 𝑢 → ∃ 𝑘 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶 ∈ 𝑘 ∧ ( ( 𝐹 ↾ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) “ ( 𝑘 ∩ ( ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) → ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) → ( 𝑦 ∈ 𝑢 → ∃ 𝑘 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶 ∈ 𝑘 ∧ ( ( 𝐹 ↾ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) “ ( 𝑘 ∩ ( ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) ) |
52 |
48 49 50 51
|
syl3c |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦 ∈ 𝑢 ) ) ∧ 𝑎 ∈ 𝐴 ) → ∃ 𝑘 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶 ∈ 𝑘 ∧ ( ( 𝐹 ↾ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) “ ( 𝑘 ∩ ( ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) |
53 |
52
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦 ∈ 𝑢 ) ) → ∀ 𝑎 ∈ 𝐴 ∃ 𝑘 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶 ∈ 𝑘 ∧ ( ( 𝐹 ↾ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) “ ( 𝑘 ∩ ( ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) |
54 |
|
nfv |
⊢ Ⅎ 𝑎 ∃ 𝑘 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶 ∈ 𝑘 ∧ ( ( 𝐹 ↾ 𝐵 ) “ ( 𝑘 ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) |
55 |
|
nfcv |
⊢ Ⅎ 𝑥 ( TopOpen ‘ ℂfld ) |
56 |
|
nfv |
⊢ Ⅎ 𝑥 𝐶 ∈ 𝑘 |
57 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑘 |
58 |
|
nfcv |
⊢ Ⅎ 𝑥 { 𝐶 } |
59 |
17 58
|
nfdif |
⊢ Ⅎ 𝑥 ( ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∖ { 𝐶 } ) |
60 |
57 59
|
nfin |
⊢ Ⅎ 𝑥 ( 𝑘 ∩ ( ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∖ { 𝐶 } ) ) |
61 |
18 60
|
nfima |
⊢ Ⅎ 𝑥 ( ( 𝐹 ↾ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) “ ( 𝑘 ∩ ( ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∖ { 𝐶 } ) ) ) |
62 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑢 |
63 |
61 62
|
nfss |
⊢ Ⅎ 𝑥 ( ( 𝐹 ↾ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) “ ( 𝑘 ∩ ( ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 |
64 |
56 63
|
nfan |
⊢ Ⅎ 𝑥 ( 𝐶 ∈ 𝑘 ∧ ( ( 𝐹 ↾ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) “ ( 𝑘 ∩ ( ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) |
65 |
55 64
|
nfrex |
⊢ Ⅎ 𝑥 ∃ 𝑘 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶 ∈ 𝑘 ∧ ( ( 𝐹 ↾ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) “ ( 𝑘 ∩ ( ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) |
66 |
23
|
difeq1d |
⊢ ( 𝑥 = 𝑎 → ( 𝐵 ∖ { 𝐶 } ) = ( ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∖ { 𝐶 } ) ) |
67 |
66
|
ineq2d |
⊢ ( 𝑥 = 𝑎 → ( 𝑘 ∩ ( 𝐵 ∖ { 𝐶 } ) ) = ( 𝑘 ∩ ( ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∖ { 𝐶 } ) ) ) |
68 |
24 67
|
imaeq12d |
⊢ ( 𝑥 = 𝑎 → ( ( 𝐹 ↾ 𝐵 ) “ ( 𝑘 ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) = ( ( 𝐹 ↾ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) “ ( 𝑘 ∩ ( ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∖ { 𝐶 } ) ) ) ) |
69 |
68
|
sseq1d |
⊢ ( 𝑥 = 𝑎 → ( ( ( 𝐹 ↾ 𝐵 ) “ ( 𝑘 ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ↔ ( ( 𝐹 ↾ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) “ ( 𝑘 ∩ ( ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) |
70 |
69
|
anbi2d |
⊢ ( 𝑥 = 𝑎 → ( ( 𝐶 ∈ 𝑘 ∧ ( ( 𝐹 ↾ 𝐵 ) “ ( 𝑘 ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ↔ ( 𝐶 ∈ 𝑘 ∧ ( ( 𝐹 ↾ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) “ ( 𝑘 ∩ ( ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) |
71 |
70
|
rexbidv |
⊢ ( 𝑥 = 𝑎 → ( ∃ 𝑘 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶 ∈ 𝑘 ∧ ( ( 𝐹 ↾ 𝐵 ) “ ( 𝑘 ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ↔ ∃ 𝑘 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶 ∈ 𝑘 ∧ ( ( 𝐹 ↾ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) “ ( 𝑘 ∩ ( ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) |
72 |
54 65 71
|
cbvralw |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑘 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶 ∈ 𝑘 ∧ ( ( 𝐹 ↾ 𝐵 ) “ ( 𝑘 ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ↔ ∀ 𝑎 ∈ 𝐴 ∃ 𝑘 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶 ∈ 𝑘 ∧ ( ( 𝐹 ↾ ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ) “ ( 𝑘 ∩ ( ⦋ 𝑎 / 𝑥 ⦌ 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) |
73 |
53 72
|
sylibr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦 ∈ 𝑢 ) ) → ∀ 𝑥 ∈ 𝐴 ∃ 𝑘 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶 ∈ 𝑘 ∧ ( ( 𝐹 ↾ 𝐵 ) “ ( 𝑘 ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) |
74 |
|
eleq2 |
⊢ ( 𝑘 = ( 𝑔 ‘ 𝑥 ) → ( 𝐶 ∈ 𝑘 ↔ 𝐶 ∈ ( 𝑔 ‘ 𝑥 ) ) ) |
75 |
|
ineq1 |
⊢ ( 𝑘 = ( 𝑔 ‘ 𝑥 ) → ( 𝑘 ∩ ( 𝐵 ∖ { 𝐶 } ) ) = ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) |
76 |
75
|
imaeq2d |
⊢ ( 𝑘 = ( 𝑔 ‘ 𝑥 ) → ( ( 𝐹 ↾ 𝐵 ) “ ( 𝑘 ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) = ( ( 𝐹 ↾ 𝐵 ) “ ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ) |
77 |
76
|
sseq1d |
⊢ ( 𝑘 = ( 𝑔 ‘ 𝑥 ) → ( ( ( 𝐹 ↾ 𝐵 ) “ ( 𝑘 ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ↔ ( ( 𝐹 ↾ 𝐵 ) “ ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) |
78 |
74 77
|
anbi12d |
⊢ ( 𝑘 = ( 𝑔 ‘ 𝑥 ) → ( ( 𝐶 ∈ 𝑘 ∧ ( ( 𝐹 ↾ 𝐵 ) “ ( 𝑘 ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ↔ ( 𝐶 ∈ ( 𝑔 ‘ 𝑥 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) |
79 |
78
|
ac6sfi |
⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑘 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶 ∈ 𝑘 ∧ ( ( 𝐹 ↾ 𝐵 ) “ ( 𝑘 ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) → ∃ 𝑔 ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐶 ∈ ( 𝑔 ‘ 𝑥 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) |
80 |
14 73 79
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦 ∈ 𝑢 ) ) → ∃ 𝑔 ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐶 ∈ ( 𝑔 ‘ 𝑥 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) |
81 |
44
|
cnfldtop |
⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
82 |
|
frn |
⊢ ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) → ran 𝑔 ⊆ ( TopOpen ‘ ℂfld ) ) |
83 |
82
|
ad2antrl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦 ∈ 𝑢 ) ) ∧ ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐶 ∈ ( 𝑔 ‘ 𝑥 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) → ran 𝑔 ⊆ ( TopOpen ‘ ℂfld ) ) |
84 |
14
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦 ∈ 𝑢 ) ) ∧ ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐶 ∈ ( 𝑔 ‘ 𝑥 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) → 𝐴 ∈ Fin ) |
85 |
|
ffn |
⊢ ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) → 𝑔 Fn 𝐴 ) |
86 |
85
|
ad2antrl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦 ∈ 𝑢 ) ) ∧ ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐶 ∈ ( 𝑔 ‘ 𝑥 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) → 𝑔 Fn 𝐴 ) |
87 |
|
dffn4 |
⊢ ( 𝑔 Fn 𝐴 ↔ 𝑔 : 𝐴 –onto→ ran 𝑔 ) |
88 |
86 87
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦 ∈ 𝑢 ) ) ∧ ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐶 ∈ ( 𝑔 ‘ 𝑥 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) → 𝑔 : 𝐴 –onto→ ran 𝑔 ) |
89 |
|
fofi |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝑔 : 𝐴 –onto→ ran 𝑔 ) → ran 𝑔 ∈ Fin ) |
90 |
84 88 89
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦 ∈ 𝑢 ) ) ∧ ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐶 ∈ ( 𝑔 ‘ 𝑥 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) → ran 𝑔 ∈ Fin ) |
91 |
|
unicntop |
⊢ ℂ = ∪ ( TopOpen ‘ ℂfld ) |
92 |
91
|
rintopn |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ran 𝑔 ⊆ ( TopOpen ‘ ℂfld ) ∧ ran 𝑔 ∈ Fin ) → ( ℂ ∩ ∩ ran 𝑔 ) ∈ ( TopOpen ‘ ℂfld ) ) |
93 |
81 83 90 92
|
mp3an2i |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦 ∈ 𝑢 ) ) ∧ ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐶 ∈ ( 𝑔 ‘ 𝑥 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) → ( ℂ ∩ ∩ ran 𝑔 ) ∈ ( TopOpen ‘ ℂfld ) ) |
94 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) → 𝐶 ∈ ℂ ) |
95 |
94
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦 ∈ 𝑢 ) ) ∧ ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐶 ∈ ( 𝑔 ‘ 𝑥 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) → 𝐶 ∈ ℂ ) |
96 |
|
simpl |
⊢ ( ( 𝐶 ∈ ( 𝑔 ‘ 𝑥 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) → 𝐶 ∈ ( 𝑔 ‘ 𝑥 ) ) |
97 |
96
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐶 ∈ ( 𝑔 ‘ 𝑥 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) → ∀ 𝑥 ∈ 𝐴 𝐶 ∈ ( 𝑔 ‘ 𝑥 ) ) |
98 |
97
|
ad2antll |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦 ∈ 𝑢 ) ) ∧ ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐶 ∈ ( 𝑔 ‘ 𝑥 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) → ∀ 𝑥 ∈ 𝐴 𝐶 ∈ ( 𝑔 ‘ 𝑥 ) ) |
99 |
|
eleq2 |
⊢ ( 𝑧 = ( 𝑔 ‘ 𝑥 ) → ( 𝐶 ∈ 𝑧 ↔ 𝐶 ∈ ( 𝑔 ‘ 𝑥 ) ) ) |
100 |
99
|
ralrn |
⊢ ( 𝑔 Fn 𝐴 → ( ∀ 𝑧 ∈ ran 𝑔 𝐶 ∈ 𝑧 ↔ ∀ 𝑥 ∈ 𝐴 𝐶 ∈ ( 𝑔 ‘ 𝑥 ) ) ) |
101 |
86 100
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦 ∈ 𝑢 ) ) ∧ ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐶 ∈ ( 𝑔 ‘ 𝑥 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) → ( ∀ 𝑧 ∈ ran 𝑔 𝐶 ∈ 𝑧 ↔ ∀ 𝑥 ∈ 𝐴 𝐶 ∈ ( 𝑔 ‘ 𝑥 ) ) ) |
102 |
98 101
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦 ∈ 𝑢 ) ) ∧ ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐶 ∈ ( 𝑔 ‘ 𝑥 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) → ∀ 𝑧 ∈ ran 𝑔 𝐶 ∈ 𝑧 ) |
103 |
|
elrint |
⊢ ( 𝐶 ∈ ( ℂ ∩ ∩ ran 𝑔 ) ↔ ( 𝐶 ∈ ℂ ∧ ∀ 𝑧 ∈ ran 𝑔 𝐶 ∈ 𝑧 ) ) |
104 |
95 102 103
|
sylanbrc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦 ∈ 𝑢 ) ) ∧ ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐶 ∈ ( 𝑔 ‘ 𝑥 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) → 𝐶 ∈ ( ℂ ∩ ∩ ran 𝑔 ) ) |
105 |
|
indifcom |
⊢ ( ( ℂ ∩ ∩ ran 𝑔 ) ∩ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∖ { 𝐶 } ) ) = ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ ( ( ℂ ∩ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) |
106 |
|
iunin1 |
⊢ ∪ 𝑥 ∈ 𝐴 ( 𝐵 ∩ ( ( ℂ ∩ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) = ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ ( ( ℂ ∩ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) |
107 |
105 106
|
eqtr4i |
⊢ ( ( ℂ ∩ ∩ ran 𝑔 ) ∩ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∖ { 𝐶 } ) ) = ∪ 𝑥 ∈ 𝐴 ( 𝐵 ∩ ( ( ℂ ∩ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) |
108 |
107
|
imaeq2i |
⊢ ( 𝐹 “ ( ( ℂ ∩ ∩ ran 𝑔 ) ∩ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∖ { 𝐶 } ) ) ) = ( 𝐹 “ ∪ 𝑥 ∈ 𝐴 ( 𝐵 ∩ ( ( ℂ ∩ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) ) |
109 |
|
imaiun |
⊢ ( 𝐹 “ ∪ 𝑥 ∈ 𝐴 ( 𝐵 ∩ ( ( ℂ ∩ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) ) = ∪ 𝑥 ∈ 𝐴 ( 𝐹 “ ( 𝐵 ∩ ( ( ℂ ∩ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) ) |
110 |
108 109
|
eqtri |
⊢ ( 𝐹 “ ( ( ℂ ∩ ∩ ran 𝑔 ) ∩ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∖ { 𝐶 } ) ) ) = ∪ 𝑥 ∈ 𝐴 ( 𝐹 “ ( 𝐵 ∩ ( ( ℂ ∩ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) ) |
111 |
|
inss2 |
⊢ ( ℂ ∩ ∩ ran 𝑔 ) ⊆ ∩ ran 𝑔 |
112 |
|
fnfvelrn |
⊢ ( ( 𝑔 Fn 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑔 ‘ 𝑥 ) ∈ ran 𝑔 ) |
113 |
85 112
|
sylan |
⊢ ( ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑔 ‘ 𝑥 ) ∈ ran 𝑔 ) |
114 |
|
intss1 |
⊢ ( ( 𝑔 ‘ 𝑥 ) ∈ ran 𝑔 → ∩ ran 𝑔 ⊆ ( 𝑔 ‘ 𝑥 ) ) |
115 |
113 114
|
syl |
⊢ ( ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ 𝑥 ∈ 𝐴 ) → ∩ ran 𝑔 ⊆ ( 𝑔 ‘ 𝑥 ) ) |
116 |
111 115
|
sstrid |
⊢ ( ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ 𝑥 ∈ 𝐴 ) → ( ℂ ∩ ∩ ran 𝑔 ) ⊆ ( 𝑔 ‘ 𝑥 ) ) |
117 |
116
|
ssdifd |
⊢ ( ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ℂ ∩ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ⊆ ( ( 𝑔 ‘ 𝑥 ) ∖ { 𝐶 } ) ) |
118 |
|
sslin |
⊢ ( ( ( ℂ ∩ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ⊆ ( ( 𝑔 ‘ 𝑥 ) ∖ { 𝐶 } ) → ( 𝐵 ∩ ( ( ℂ ∩ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) ⊆ ( 𝐵 ∩ ( ( 𝑔 ‘ 𝑥 ) ∖ { 𝐶 } ) ) ) |
119 |
|
imass2 |
⊢ ( ( 𝐵 ∩ ( ( ℂ ∩ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) ⊆ ( 𝐵 ∩ ( ( 𝑔 ‘ 𝑥 ) ∖ { 𝐶 } ) ) → ( 𝐹 “ ( 𝐵 ∩ ( ( ℂ ∩ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) ) ⊆ ( 𝐹 “ ( 𝐵 ∩ ( ( 𝑔 ‘ 𝑥 ) ∖ { 𝐶 } ) ) ) ) |
120 |
117 118 119
|
3syl |
⊢ ( ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 “ ( 𝐵 ∩ ( ( ℂ ∩ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) ) ⊆ ( 𝐹 “ ( 𝐵 ∩ ( ( 𝑔 ‘ 𝑥 ) ∖ { 𝐶 } ) ) ) ) |
121 |
|
indifcom |
⊢ ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) = ( 𝐵 ∩ ( ( 𝑔 ‘ 𝑥 ) ∖ { 𝐶 } ) ) |
122 |
121
|
imaeq2i |
⊢ ( ( 𝐹 ↾ 𝐵 ) “ ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) = ( ( 𝐹 ↾ 𝐵 ) “ ( 𝐵 ∩ ( ( 𝑔 ‘ 𝑥 ) ∖ { 𝐶 } ) ) ) |
123 |
|
inss1 |
⊢ ( 𝐵 ∩ ( ( 𝑔 ‘ 𝑥 ) ∖ { 𝐶 } ) ) ⊆ 𝐵 |
124 |
|
resima2 |
⊢ ( ( 𝐵 ∩ ( ( 𝑔 ‘ 𝑥 ) ∖ { 𝐶 } ) ) ⊆ 𝐵 → ( ( 𝐹 ↾ 𝐵 ) “ ( 𝐵 ∩ ( ( 𝑔 ‘ 𝑥 ) ∖ { 𝐶 } ) ) ) = ( 𝐹 “ ( 𝐵 ∩ ( ( 𝑔 ‘ 𝑥 ) ∖ { 𝐶 } ) ) ) ) |
125 |
123 124
|
ax-mp |
⊢ ( ( 𝐹 ↾ 𝐵 ) “ ( 𝐵 ∩ ( ( 𝑔 ‘ 𝑥 ) ∖ { 𝐶 } ) ) ) = ( 𝐹 “ ( 𝐵 ∩ ( ( 𝑔 ‘ 𝑥 ) ∖ { 𝐶 } ) ) ) |
126 |
122 125
|
eqtri |
⊢ ( ( 𝐹 ↾ 𝐵 ) “ ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) = ( 𝐹 “ ( 𝐵 ∩ ( ( 𝑔 ‘ 𝑥 ) ∖ { 𝐶 } ) ) ) |
127 |
120 126
|
sseqtrrdi |
⊢ ( ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 “ ( 𝐵 ∩ ( ( ℂ ∩ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) ) ⊆ ( ( 𝐹 ↾ 𝐵 ) “ ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ) |
128 |
|
sstr2 |
⊢ ( ( 𝐹 “ ( 𝐵 ∩ ( ( ℂ ∩ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) ) ⊆ ( ( 𝐹 ↾ 𝐵 ) “ ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) → ( ( ( 𝐹 ↾ 𝐵 ) “ ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 → ( 𝐹 “ ( 𝐵 ∩ ( ( ℂ ∩ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) |
129 |
127 128
|
syl |
⊢ ( ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝐹 ↾ 𝐵 ) “ ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 → ( 𝐹 “ ( 𝐵 ∩ ( ( ℂ ∩ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) |
130 |
129
|
adantld |
⊢ ( ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐶 ∈ ( 𝑔 ‘ 𝑥 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) → ( 𝐹 “ ( 𝐵 ∩ ( ( ℂ ∩ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) |
131 |
130
|
ralimdva |
⊢ ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝐶 ∈ ( 𝑔 ‘ 𝑥 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) → ∀ 𝑥 ∈ 𝐴 ( 𝐹 “ ( 𝐵 ∩ ( ( ℂ ∩ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) |
132 |
131
|
imp |
⊢ ( ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐶 ∈ ( 𝑔 ‘ 𝑥 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) → ∀ 𝑥 ∈ 𝐴 ( 𝐹 “ ( 𝐵 ∩ ( ( ℂ ∩ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) |
133 |
132
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦 ∈ 𝑢 ) ) ∧ ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐶 ∈ ( 𝑔 ‘ 𝑥 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) → ∀ 𝑥 ∈ 𝐴 ( 𝐹 “ ( 𝐵 ∩ ( ( ℂ ∩ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) |
134 |
|
iunss |
⊢ ( ∪ 𝑥 ∈ 𝐴 ( 𝐹 “ ( 𝐵 ∩ ( ( ℂ ∩ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐹 “ ( 𝐵 ∩ ( ( ℂ ∩ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) |
135 |
133 134
|
sylibr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦 ∈ 𝑢 ) ) ∧ ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐶 ∈ ( 𝑔 ‘ 𝑥 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) → ∪ 𝑥 ∈ 𝐴 ( 𝐹 “ ( 𝐵 ∩ ( ( ℂ ∩ ∩ ran 𝑔 ) ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) |
136 |
110 135
|
eqsstrid |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦 ∈ 𝑢 ) ) ∧ ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐶 ∈ ( 𝑔 ‘ 𝑥 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) → ( 𝐹 “ ( ( ℂ ∩ ∩ ran 𝑔 ) ∩ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) |
137 |
|
eleq2 |
⊢ ( 𝑣 = ( ℂ ∩ ∩ ran 𝑔 ) → ( 𝐶 ∈ 𝑣 ↔ 𝐶 ∈ ( ℂ ∩ ∩ ran 𝑔 ) ) ) |
138 |
|
ineq1 |
⊢ ( 𝑣 = ( ℂ ∩ ∩ ran 𝑔 ) → ( 𝑣 ∩ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∖ { 𝐶 } ) ) = ( ( ℂ ∩ ∩ ran 𝑔 ) ∩ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∖ { 𝐶 } ) ) ) |
139 |
138
|
imaeq2d |
⊢ ( 𝑣 = ( ℂ ∩ ∩ ran 𝑔 ) → ( 𝐹 “ ( 𝑣 ∩ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∖ { 𝐶 } ) ) ) = ( 𝐹 “ ( ( ℂ ∩ ∩ ran 𝑔 ) ∩ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∖ { 𝐶 } ) ) ) ) |
140 |
139
|
sseq1d |
⊢ ( 𝑣 = ( ℂ ∩ ∩ ran 𝑔 ) → ( ( 𝐹 “ ( 𝑣 ∩ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ↔ ( 𝐹 “ ( ( ℂ ∩ ∩ ran 𝑔 ) ∩ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) |
141 |
137 140
|
anbi12d |
⊢ ( 𝑣 = ( ℂ ∩ ∩ ran 𝑔 ) → ( ( 𝐶 ∈ 𝑣 ∧ ( 𝐹 “ ( 𝑣 ∩ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ↔ ( 𝐶 ∈ ( ℂ ∩ ∩ ran 𝑔 ) ∧ ( 𝐹 “ ( ( ℂ ∩ ∩ ran 𝑔 ) ∩ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) |
142 |
141
|
rspcev |
⊢ ( ( ( ℂ ∩ ∩ ran 𝑔 ) ∈ ( TopOpen ‘ ℂfld ) ∧ ( 𝐶 ∈ ( ℂ ∩ ∩ ran 𝑔 ) ∧ ( 𝐹 “ ( ( ℂ ∩ ∩ ran 𝑔 ) ∩ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) → ∃ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶 ∈ 𝑣 ∧ ( 𝐹 “ ( 𝑣 ∩ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) |
143 |
93 104 136 142
|
syl12anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦 ∈ 𝑢 ) ) ∧ ( 𝑔 : 𝐴 ⟶ ( TopOpen ‘ ℂfld ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐶 ∈ ( 𝑔 ‘ 𝑥 ) ∧ ( ( 𝐹 ↾ 𝐵 ) “ ( ( 𝑔 ‘ 𝑥 ) ∩ ( 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) → ∃ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶 ∈ 𝑣 ∧ ( 𝐹 “ ( 𝑣 ∩ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) |
144 |
80 143
|
exlimddv |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ ( 𝑢 ∈ ( TopOpen ‘ ℂfld ) ∧ 𝑦 ∈ 𝑢 ) ) → ∃ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶 ∈ 𝑣 ∧ ( 𝐹 “ ( 𝑣 ∩ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) |
145 |
144
|
expr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ∧ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ) → ( 𝑦 ∈ 𝑢 → ∃ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶 ∈ 𝑣 ∧ ( 𝐹 “ ( 𝑣 ∩ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) |
146 |
145
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) → ∀ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ( 𝑦 ∈ 𝑢 → ∃ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶 ∈ 𝑣 ∧ ( 𝐹 “ ( 𝑣 ∩ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) |
147 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) → 𝐹 : ∪ 𝑥 ∈ 𝐴 𝐵 ⟶ ℂ ) |
148 |
|
iunss |
⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ℂ ↔ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ℂ ) |
149 |
2 148
|
sylibr |
⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ℂ ) |
150 |
149
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ℂ ) |
151 |
147 150 94 44
|
ellimc2 |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) → ( 𝑦 ∈ ( 𝐹 limℂ 𝐶 ) ↔ ( 𝑦 ∈ ℂ ∧ ∀ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ( 𝑦 ∈ 𝑢 → ∃ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶 ∈ 𝑣 ∧ ( 𝐹 “ ( 𝑣 ∩ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∖ { 𝐶 } ) ) ) ⊆ 𝑢 ) ) ) ) ) |
152 |
13 146 151
|
mpbir2and |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) → 𝑦 ∈ ( 𝐹 limℂ 𝐶 ) ) |
153 |
152
|
ex |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) → 𝑦 ∈ ( 𝐹 limℂ 𝐶 ) ) ) |
154 |
12 153
|
syl5bi |
⊢ ( 𝜑 → ( 𝑦 ∈ ( ℂ ∩ ∩ 𝑥 ∈ 𝐴 ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) → 𝑦 ∈ ( 𝐹 limℂ 𝐶 ) ) ) |
155 |
154
|
ssrdv |
⊢ ( 𝜑 → ( ℂ ∩ ∩ 𝑥 ∈ 𝐴 ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ⊆ ( 𝐹 limℂ 𝐶 ) ) |
156 |
11 155
|
eqssd |
⊢ ( 𝜑 → ( 𝐹 limℂ 𝐶 ) = ( ℂ ∩ ∩ 𝑥 ∈ 𝐴 ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) |