Metamath Proof Explorer


Theorem limcmo

Description: If B is a limit point of the domain of the function F , then there is at most one limit value of F at B . (Contributed by Mario Carneiro, 25-Dec-2016)

Ref Expression
Hypotheses limcflf.f ( 𝜑𝐹 : 𝐴 ⟶ ℂ )
limcflf.a ( 𝜑𝐴 ⊆ ℂ )
limcflf.b ( 𝜑𝐵 ∈ ( ( limPt ‘ 𝐾 ) ‘ 𝐴 ) )
limcflf.k 𝐾 = ( TopOpen ‘ ℂfld )
Assertion limcmo ( 𝜑 → ∃* 𝑥 𝑥 ∈ ( 𝐹 lim 𝐵 ) )

Proof

Step Hyp Ref Expression
1 limcflf.f ( 𝜑𝐹 : 𝐴 ⟶ ℂ )
2 limcflf.a ( 𝜑𝐴 ⊆ ℂ )
3 limcflf.b ( 𝜑𝐵 ∈ ( ( limPt ‘ 𝐾 ) ‘ 𝐴 ) )
4 limcflf.k 𝐾 = ( TopOpen ‘ ℂfld )
5 4 cnfldhaus 𝐾 ∈ Haus
6 eqid ( 𝐴 ∖ { 𝐵 } ) = ( 𝐴 ∖ { 𝐵 } )
7 eqid ( ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↾t ( 𝐴 ∖ { 𝐵 } ) ) = ( ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↾t ( 𝐴 ∖ { 𝐵 } ) )
8 1 2 3 4 6 7 limcflflem ( 𝜑 → ( ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↾t ( 𝐴 ∖ { 𝐵 } ) ) ∈ ( Fil ‘ ( 𝐴 ∖ { 𝐵 } ) ) )
9 difss ( 𝐴 ∖ { 𝐵 } ) ⊆ 𝐴
10 fssres ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ ( 𝐴 ∖ { 𝐵 } ) ⊆ 𝐴 ) → ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) : ( 𝐴 ∖ { 𝐵 } ) ⟶ ℂ )
11 1 9 10 sylancl ( 𝜑 → ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) : ( 𝐴 ∖ { 𝐵 } ) ⟶ ℂ )
12 4 cnfldtopon 𝐾 ∈ ( TopOn ‘ ℂ )
13 12 toponunii ℂ = 𝐾
14 13 hausflf ( ( 𝐾 ∈ Haus ∧ ( ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↾t ( 𝐴 ∖ { 𝐵 } ) ) ∈ ( Fil ‘ ( 𝐴 ∖ { 𝐵 } ) ) ∧ ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) : ( 𝐴 ∖ { 𝐵 } ) ⟶ ℂ ) → ∃* 𝑥 𝑥 ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↾t ( 𝐴 ∖ { 𝐵 } ) ) ) ‘ ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) ) )
15 5 8 11 14 mp3an2i ( 𝜑 → ∃* 𝑥 𝑥 ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↾t ( 𝐴 ∖ { 𝐵 } ) ) ) ‘ ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) ) )
16 1 2 3 4 6 7 limcflf ( 𝜑 → ( 𝐹 lim 𝐵 ) = ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↾t ( 𝐴 ∖ { 𝐵 } ) ) ) ‘ ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) ) )
17 16 eleq2d ( 𝜑 → ( 𝑥 ∈ ( 𝐹 lim 𝐵 ) ↔ 𝑥 ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↾t ( 𝐴 ∖ { 𝐵 } ) ) ) ‘ ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) ) ) )
18 17 mobidv ( 𝜑 → ( ∃* 𝑥 𝑥 ∈ ( 𝐹 lim 𝐵 ) ↔ ∃* 𝑥 𝑥 ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↾t ( 𝐴 ∖ { 𝐵 } ) ) ) ‘ ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) ) ) )
19 15 18 mpbird ( 𝜑 → ∃* 𝑥 𝑥 ∈ ( 𝐹 lim 𝐵 ) )