Step |
Hyp |
Ref |
Expression |
1 |
|
limcflf.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) |
2 |
|
limcflf.a |
⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) |
3 |
|
limcflf.b |
⊢ ( 𝜑 → 𝐵 ∈ ( ( limPt ‘ 𝐾 ) ‘ 𝐴 ) ) |
4 |
|
limcflf.k |
⊢ 𝐾 = ( TopOpen ‘ ℂfld ) |
5 |
4
|
cnfldhaus |
⊢ 𝐾 ∈ Haus |
6 |
|
eqid |
⊢ ( 𝐴 ∖ { 𝐵 } ) = ( 𝐴 ∖ { 𝐵 } ) |
7 |
|
eqid |
⊢ ( ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↾t ( 𝐴 ∖ { 𝐵 } ) ) = ( ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↾t ( 𝐴 ∖ { 𝐵 } ) ) |
8 |
1 2 3 4 6 7
|
limcflflem |
⊢ ( 𝜑 → ( ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↾t ( 𝐴 ∖ { 𝐵 } ) ) ∈ ( Fil ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) |
9 |
|
difss |
⊢ ( 𝐴 ∖ { 𝐵 } ) ⊆ 𝐴 |
10 |
|
fssres |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ ( 𝐴 ∖ { 𝐵 } ) ⊆ 𝐴 ) → ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) : ( 𝐴 ∖ { 𝐵 } ) ⟶ ℂ ) |
11 |
1 9 10
|
sylancl |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) : ( 𝐴 ∖ { 𝐵 } ) ⟶ ℂ ) |
12 |
4
|
cnfldtopon |
⊢ 𝐾 ∈ ( TopOn ‘ ℂ ) |
13 |
12
|
toponunii |
⊢ ℂ = ∪ 𝐾 |
14 |
13
|
hausflf |
⊢ ( ( 𝐾 ∈ Haus ∧ ( ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↾t ( 𝐴 ∖ { 𝐵 } ) ) ∈ ( Fil ‘ ( 𝐴 ∖ { 𝐵 } ) ) ∧ ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) : ( 𝐴 ∖ { 𝐵 } ) ⟶ ℂ ) → ∃* 𝑥 𝑥 ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↾t ( 𝐴 ∖ { 𝐵 } ) ) ) ‘ ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) ) ) |
15 |
5 8 11 14
|
mp3an2i |
⊢ ( 𝜑 → ∃* 𝑥 𝑥 ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↾t ( 𝐴 ∖ { 𝐵 } ) ) ) ‘ ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) ) ) |
16 |
1 2 3 4 6 7
|
limcflf |
⊢ ( 𝜑 → ( 𝐹 limℂ 𝐵 ) = ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↾t ( 𝐴 ∖ { 𝐵 } ) ) ) ‘ ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) ) ) |
17 |
16
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ↔ 𝑥 ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↾t ( 𝐴 ∖ { 𝐵 } ) ) ) ‘ ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) ) ) ) |
18 |
17
|
mobidv |
⊢ ( 𝜑 → ( ∃* 𝑥 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ↔ ∃* 𝑥 𝑥 ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐾 ) ‘ { 𝐵 } ) ↾t ( 𝐴 ∖ { 𝐵 } ) ) ) ‘ ( 𝐹 ↾ ( 𝐴 ∖ { 𝐵 } ) ) ) ) ) |
19 |
15 18
|
mpbird |
⊢ ( 𝜑 → ∃* 𝑥 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ) |