| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limcmpt.a |
⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) |
| 2 |
|
limcmpt.b |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 3 |
|
limcmpt.f |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → 𝐷 ∈ ℂ ) |
| 4 |
|
limcmpt.j |
⊢ 𝐽 = ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) |
| 5 |
|
limcmpt.k |
⊢ 𝐾 = ( TopOpen ‘ ℂfld ) |
| 6 |
|
nfcv |
⊢ Ⅎ 𝑦 if ( 𝑧 = 𝐵 , 𝐶 , ( ( 𝑧 ∈ 𝐴 ↦ 𝐷 ) ‘ 𝑧 ) ) |
| 7 |
|
nfv |
⊢ Ⅎ 𝑧 𝑦 = 𝐵 |
| 8 |
|
nfcv |
⊢ Ⅎ 𝑧 𝐶 |
| 9 |
|
nffvmpt1 |
⊢ Ⅎ 𝑧 ( ( 𝑧 ∈ 𝐴 ↦ 𝐷 ) ‘ 𝑦 ) |
| 10 |
7 8 9
|
nfif |
⊢ Ⅎ 𝑧 if ( 𝑦 = 𝐵 , 𝐶 , ( ( 𝑧 ∈ 𝐴 ↦ 𝐷 ) ‘ 𝑦 ) ) |
| 11 |
|
eqeq1 |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 = 𝐵 ↔ 𝑦 = 𝐵 ) ) |
| 12 |
|
fveq2 |
⊢ ( 𝑧 = 𝑦 → ( ( 𝑧 ∈ 𝐴 ↦ 𝐷 ) ‘ 𝑧 ) = ( ( 𝑧 ∈ 𝐴 ↦ 𝐷 ) ‘ 𝑦 ) ) |
| 13 |
11 12
|
ifbieq2d |
⊢ ( 𝑧 = 𝑦 → if ( 𝑧 = 𝐵 , 𝐶 , ( ( 𝑧 ∈ 𝐴 ↦ 𝐷 ) ‘ 𝑧 ) ) = if ( 𝑦 = 𝐵 , 𝐶 , ( ( 𝑧 ∈ 𝐴 ↦ 𝐷 ) ‘ 𝑦 ) ) ) |
| 14 |
6 10 13
|
cbvmpt |
⊢ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( ( 𝑧 ∈ 𝐴 ↦ 𝐷 ) ‘ 𝑧 ) ) ) = ( 𝑦 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑦 = 𝐵 , 𝐶 , ( ( 𝑧 ∈ 𝐴 ↦ 𝐷 ) ‘ 𝑦 ) ) ) |
| 15 |
3
|
fmpttd |
⊢ ( 𝜑 → ( 𝑧 ∈ 𝐴 ↦ 𝐷 ) : 𝐴 ⟶ ℂ ) |
| 16 |
4 5 14 15 1 2
|
ellimc |
⊢ ( 𝜑 → ( 𝐶 ∈ ( ( 𝑧 ∈ 𝐴 ↦ 𝐷 ) limℂ 𝐵 ) ↔ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( ( 𝑧 ∈ 𝐴 ↦ 𝐷 ) ‘ 𝑧 ) ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) ) |
| 17 |
|
elun |
⊢ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↔ ( 𝑧 ∈ 𝐴 ∨ 𝑧 ∈ { 𝐵 } ) ) |
| 18 |
|
velsn |
⊢ ( 𝑧 ∈ { 𝐵 } ↔ 𝑧 = 𝐵 ) |
| 19 |
18
|
orbi2i |
⊢ ( ( 𝑧 ∈ 𝐴 ∨ 𝑧 ∈ { 𝐵 } ) ↔ ( 𝑧 ∈ 𝐴 ∨ 𝑧 = 𝐵 ) ) |
| 20 |
17 19
|
bitri |
⊢ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↔ ( 𝑧 ∈ 𝐴 ∨ 𝑧 = 𝐵 ) ) |
| 21 |
|
pm5.61 |
⊢ ( ( ( 𝑧 ∈ 𝐴 ∨ 𝑧 = 𝐵 ) ∧ ¬ 𝑧 = 𝐵 ) ↔ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 = 𝐵 ) ) |
| 22 |
21
|
simplbi |
⊢ ( ( ( 𝑧 ∈ 𝐴 ∨ 𝑧 = 𝐵 ) ∧ ¬ 𝑧 = 𝐵 ) → 𝑧 ∈ 𝐴 ) |
| 23 |
20 22
|
sylanb |
⊢ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ∧ ¬ 𝑧 = 𝐵 ) → 𝑧 ∈ 𝐴 ) |
| 24 |
23 3
|
sylan2 |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ∧ ¬ 𝑧 = 𝐵 ) ) → 𝐷 ∈ ℂ ) |
| 25 |
|
eqid |
⊢ ( 𝑧 ∈ 𝐴 ↦ 𝐷 ) = ( 𝑧 ∈ 𝐴 ↦ 𝐷 ) |
| 26 |
25
|
fvmpt2 |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝐷 ∈ ℂ ) → ( ( 𝑧 ∈ 𝐴 ↦ 𝐷 ) ‘ 𝑧 ) = 𝐷 ) |
| 27 |
23 24 26
|
syl2an2 |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ∧ ¬ 𝑧 = 𝐵 ) ) → ( ( 𝑧 ∈ 𝐴 ↦ 𝐷 ) ‘ 𝑧 ) = 𝐷 ) |
| 28 |
27
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ) ∧ ¬ 𝑧 = 𝐵 ) → ( ( 𝑧 ∈ 𝐴 ↦ 𝐷 ) ‘ 𝑧 ) = 𝐷 ) |
| 29 |
28
|
ifeq2da |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ) → if ( 𝑧 = 𝐵 , 𝐶 , ( ( 𝑧 ∈ 𝐴 ↦ 𝐷 ) ‘ 𝑧 ) ) = if ( 𝑧 = 𝐵 , 𝐶 , 𝐷 ) ) |
| 30 |
29
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( ( 𝑧 ∈ 𝐴 ↦ 𝐷 ) ‘ 𝑧 ) ) ) = ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , 𝐷 ) ) ) |
| 31 |
30
|
eleq1d |
⊢ ( 𝜑 → ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( ( 𝑧 ∈ 𝐴 ↦ 𝐷 ) ‘ 𝑧 ) ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ↔ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , 𝐷 ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) ) |
| 32 |
16 31
|
bitrd |
⊢ ( 𝜑 → ( 𝐶 ∈ ( ( 𝑧 ∈ 𝐴 ↦ 𝐷 ) limℂ 𝐵 ) ↔ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , 𝐷 ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) ) |